Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Curr Allergy Asthma Rep ; 19(12): 59, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31781873

ABSTRACT

PURPOSE OF REVIEW: Asthma is a chronic respiratory condition with increasing domestic and worldwide prevalence that burdens individuals and the healthcare system with high costs associated with long-term treatments and acute emergency room (ER) visits. It can be triggered by ambient microbes, including bacteria, viruses, and fungi. In this review, we examine the outcomes of asthma patients in relation to environmental exposures to ambient microbe products, focusing on whether exposure leads to asthma development from birth to childhood and if particular microbes are associated with worsened asthma exacerbations. RECENT FINDINGS: Bacterial endotoxin is more prominent in homes with pets and may cause cytokine cascades that lead to asthma exacerbation. However, some studies have demonstrated a protective effect with early exposure. Patients with positive Aspergillus skin testing are more prone to moderate-severe or severe-uncontrolled asthma. Fungal sensitization is also associated with earlier onset of asthma and demonstrates a dose-dependent relationship of symptom severity and duration. Among viruses, rhinovirus has the greatest association with decreased lung function, severe asthma, and asthma-related hospital admissions. Distribution of microbial products and associated asthma symptoms depends on the geographical climate. Genetic variations among individuals also mitigate the effects of microbial products on asthma development and symptom severity. Microbial products of bacteria, fungi, and viruses are associated with the development of asthma, more severe asthma symptoms, and worse outcomes. However, some early exposure studies have also demonstrated a protective effect. Bacterial and fungal products are related to decreased lung function and earlier onset of asthma. Viral products are related to asthma-associated hospital admissions; and the climate and patient genetics can also temper or intensify the relationships between microbial products, asthma development, and asthma symptom severity. Further research should focus on the effects of early microbe exposure and its interaction with human immune systems and asthma-related outcomes.


Subject(s)
Asthma , Bacteria , Environmental Exposure , Fungi , Viruses , Air Microbiology , Air Pollutants , Asthma/genetics , Child , Farms , Humans
2.
J Allergy Clin Immunol Pract ; 9(3): 1312-1318, 2021 03.
Article in English | MEDLINE | ID: mdl-33091637

ABSTRACT

BACKGROUND: Asthma is among the most common chronic diseases of children in the United States (US). Mold exposures have been linked to asthma development and exacerbation. In homes, mold exposures have been quantified using the Environmental Relative Moldiness Index (ERMI), and higher home ERMI values have been linked to occupant asthma. OBJECTIVE: In this analysis of the School Inner-City Asthma Study (SICAS), we aimed to evaluate the ERMI's applicability to measuring mold in schools compared with homes and to examine the prevalence of asthma in relationship to students' demographics and the physical characteristics of school buildings. METHODS: Northeastern US schools (n = 32) and homes (n = 33) were selected, and the 36 ERMI molds were quantified in a dust sample from each classroom (n = 114) or home. School building characteristics data were collected from SICAS. Asthma prevalence and student demographics data were obtained from government websites. Linear regression and mixed models were fit to assess the association of the current asthma prevalence and physical characteristics of the school, make-up of the student body, and the ERMI metric. RESULTS: Levels of outdoor group 2 molds were significantly (P < .01) greater in schools compared with homes. The presence of air-conditioning in school buildings correlated significantly (P = .02) with lower asthma prevalence. CONCLUSION: The prevalence of asthma in student bodies is associated with many factors in schools and homes.


Subject(s)
Air Pollution, Indoor , Asthma , Asthma/epidemiology , Child , Fungi , Housing , Humans , Prevalence , Schools , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL