Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Radiat Res ; 64(2): 471-479, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36634350

ABSTRACT

The purpose of the present study is to evaluate the effect of curcumin as a natural compound against radiation induced γ-foci and stable chromosome aberrations. Whole blood samples form three human volunteers were pretreated with curcumin at different concentrations (0.5, 10, 20 and 100 µg/ml). After 1-hour incubation, the lymphocytes were exposed to γ-rays (0.05, 0.5, 1 and 2 Gy). Radiation induced changes in cells were quantified using γ-H2AX/53BP1 assay and FISH analysis. Our results have shown that curcumin significantly reduced the frequency of both γ-foci and translocations. We found concentration-dependent increase of curcumin protective effect on γ-H2AX/53BP1 foci formation at all radiation doses. Concerning the translocations, after 0.05 and 0.5 Gy γ-rays the values of genomic frequencies are comparable within each dose and we did not observe any impact of curcumin. The most protective effect after 1 Gy exposure was found at 100 µg/ml curcumin. At 2 Gy irradiation, the maximum protection was achieved at 0.5 and 10 µg/ml of curcumin. Concentrations of 20 and 100 µg/ml also prevent lymphocytes but to less extent. Our in vitro study indicates radioprotective efficacy of curcumin against γ-ray induced damages in human lymphocytes. This observation suggests that curcumin may play a role to protect patients undergoing radiological procedures.


Subject(s)
Curcumin , Histones , Humans , Curcumin/pharmacology , Radiation Dosage , Lymphocytes , Chromosome Aberrations , Translocation, Genetic , Dose-Response Relationship, Radiation , Gamma Rays
2.
Radiat Res ; 199(6): 591-597, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37057975

ABSTRACT

The Running the European Network of biological and retrospective dosimetry (RENEB) network of laboratories has a range of biological and physical dosimetry assays that can be deployed in the event of a radiation incident to provide exposure assessment. To maintain operational capability and provide training, RENEB runs regular inter-laboratory comparison (ILC) exercises. The RENEB ILC2021 was carried out with all the biological and physical dosimetry assays employed in the network. The focus of this paper is to evaluate the results from 6 laboratories that took part using the gamma-H2AX radiation-induced foci assay. For two laboratories this was their first RENEB ILC. Blood samples were homogenously exposed to 240 kVp X rays (1 Gy/min) to provide calibration data, (0-4 Gy), and a few weeks later three blind coded test samples, (0, 1.2 and 3.5 Gy) were prepared. All samples were allowed a 2 h repair time at 37°C before being transported, on ice packs, to the participating laboratories. On arrival, the samples were processed, scored either manually or automatically for gamma-H2AX foci and dose estimates for the 3 blind coded samples sent to the organizing laboratory. The temperature of samples during transit and the time taken to report the dose estimates were recorded. Subsequent examination of the data from each laboratory used the doses estimates to assign triage categories to the samples. After receipt of the samples, the quickest report of dose estimates was 4.6 h. Analysis of variance revealed that the laboratory carrying out the assay had a significant effect on the foci yield (P < 0.001) for the calibration data, but not on the dose estimates of the blind coded samples (P = 0.101). All laboratories correctly identified the unirradiated and irradiated samples, although the dose estimates for the latter tended to under-estimate the dose. Two participants seriously under-estimated the dose for the highly exposed sample, which resulted in the sample being placed in the lowest triage category not the highest. However, this under-estimation resulted from the samples not remaining cold during shipment, due to a delay in transit and was not related to the experience of the participating laboratory. Overall, the RENEB network laboratories have demonstrated it is possible to quickly identify a recent whole-body acute exposure using the gamma-H2AX assay within the conditions of the ILC. In addition, an ILC provides a useful training and harmonization exercise for laboratories.


Subject(s)
Biological Assay , Radiometry , Humans , Retrospective Studies , Radiometry/methods , Biological Assay/methods , Laboratories , Dose-Response Relationship, Radiation
3.
Rep Pract Oncol Radiother ; 17(1): 24-31, 2011.
Article in English | MEDLINE | ID: mdl-24376993

ABSTRACT

BACKGROUND: Pelvic organs morbidity after irradiation of cancer patients remains a major problem although new technologies have been developed and implemented. A relatively simple and suitable method for routine clinical practice is needed for preliminary assessment of normal tissue intrinsic radiosensitivity. The micronucleus test (MNT) determines the frequency of the radiation induced micronuclei (MN) in peripheral blood lymphocytes, which could serve as an indicator of intrinsic cell radiosensitivity. AIM: To investigate a possible use of the micronucleus test (MNT) for acute radiation morbidity prediction in gynecological cancer patients. MATERIALS AND METHODS: Forty gynecological cancer patients received 50 Gy conventional external pelvic irradiation after radical surgery. A four-field "box" technique was applied with 2D planning. The control group included 10 healthy females. Acute normal tissue reactions were graded according to NCI CTCAE v.3.0. From all reaction scores, the highest score named "summarized clinical radiosensitivity" was selected for a statistical analysis. MNT was performed before and after in vitro irradiation with 1.5 Gy. The mean radiation induced frequency of micronuclei per 1000 binucleated cells (MN/1000) and lymphocytes containing micronuclei per 1000 binucleated cells (cells with MN/1000) were evaluated for both patients and controls. AN ARBITRARY CUT OFF VALUE WAS CREATED TO PICK UP A RADIOSENSITIVE INDIVIDUAL: the mean value of spontaneous frequency of cells with MN/1000 ± 2SD, found in the control group. RESULTS: Both mean spontaneous frequency of cells with MN/1000 and MN/1000 were registered to be significantly higher in cancer patients compared to the control group (t = 2.46, p = 0.02 and t = 2.51, p = 0.02). No statistical difference was registered when comparing radiation induced MN frequencies between those groups. Eighty percent (32) of patients developed grade 2 summarized clinical radiosensitivity, with great variations in MNT parameters. Only three patients with grade 2 "summarized clinical radiosensitivity" had values of cells with MN/1000 above the chosen radiosensitivity threshold. CONCLUSION: The present study was not able to confirm in vitro MNT applicability for radiosensitivity prediction in pelvic irradiation.

4.
Int J Radiat Biol ; 93(1): 30-35, 2017 01.
Article in English | MEDLINE | ID: mdl-27705052

ABSTRACT

PURPOSE: In the framework of RENEB, several biodosimetry exercises were conducted analyzing different endpoints. Among them, the analysis of translocations is considered the most useful method for retrospective biodosimetry due to the relative stability of their frequency with post irradiation time. The aim of this study was to harmonize the accuracy of translocation-based biodosimetry within the RENEB consortium. MATERIALS AND METHODS: An initial telescoring exercise analyzing FISH metaphase images was done to harmonize chromosome aberration descriptions. Then two blind intercomparison exercises (IE) were performed, by sending irradiated blood samples to each partner. Samples were cultured and stained by each partner using their standard protocol and translocation frequency was used to produce dose estimates. RESULTS: The coefficient of variation in the 1st IE (CV = 0.34) was higher than in the 2nd IE (CV = 0.16 and 0.23 in the two samples analyzed), for the genomic frequency of total translocations. Z-score analysis revealed that eight out of 10 and 17 out of 20 dose estimates were satisfactory in the 1st and 2nd IE, respectively. CONCLUSIONS: The results obtained indicate that, despite the problems identified in few partners, which can be corrected, the RENEB consortium is able to carry out retrospective biodosimetry analyzing the frequency of translocations by FISH.


Subject(s)
Biological Assay/methods , In Situ Hybridization, Fluorescence/methods , Quality Assurance, Health Care , Radiation Exposure/analysis , Radiation Monitoring/methods , Translocation, Genetic/radiation effects , Biological Assay/standards , Europe , Humans , In Situ Hybridization, Fluorescence/standards , Lymphocytes/radiation effects , Radiation Monitoring/standards , Reproducibility of Results , Sensitivity and Specificity , Translocation, Genetic/genetics
5.
Int J Radiat Biol ; 93(1): 99-109, 2017 01.
Article in English | MEDLINE | ID: mdl-27437830

ABSTRACT

PURPOSE: RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. MATERIALS AND METHODS: The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation-induced thermoluminescent signals in glass screens taken from mobile phones. RESULTS: In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. CONCLUSIONS: Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios.


Subject(s)
Biological Assay/methods , Disaster Planning/methods , Laboratories , Radiation Exposure/analysis , Radiation Monitoring/methods , Safety Management/methods , European Union , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Systems Integration
6.
Int J Radiat Biol ; 93(1): 75-80, 2017 01.
Article in English | MEDLINE | ID: mdl-27559844

ABSTRACT

PURPOSE: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. MATERIALS AND METHODS: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants. The exercise was performed over 27 weeks and involved the network consisting of 28 institutes: 21 RENEB members, four candidates and three non-RENEB partners. RESULTS: The duration of a single exercise never exceeded 10 days, while the response from the assisting laboratories never came later than within half a day. During each week of the exercise, around 4500 samples were reported by all service laboratories (SL) to be examined and 54 scenarios were coherently estimated by all laboratories (the standard deviation from the mean of all SL answers for a given scenario category and a set of data was not larger than 3 patient codes). CONCLUSIONS: Each participant received training in both the role of a reference laboratory (activating the network) and of a service laboratory (responding to an activation request). The procedures in the case of radiological event were successfully established and tested.


Subject(s)
Disaster Planning/organization & administration , Radiation Monitoring/methods , Radioactive Hazard Release , Radiobiology/education , Safety Management/organization & administration , Triage/organization & administration , Europe
7.
J Radiat Res ; 54(5): 832-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23536543

ABSTRACT

The aim of this study was to evaluate the genotoxic effects of ionizing radiation in vivo in exposed Bulgarian nuclear power plant workers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes. Chromosome analysis using fluorescence in situ hybrydization (FISH) and Giemsa techniques was undertaken on 63 workers and 45 administrative staff controls from the Bulgarian Nuclear Power Plant. Using the Giemsa method, the frequencies of cells studied with chromosome aberrations, dicentrics plus rings and chromosome fragments in the radiation workers were significantly higher compared with the control group (P = 0.044, P = 0.014, and P = 0.033, respectively). A significant association between frequencies of dicentrics plus rings and accumulated doses was registered (P < 0.01). In the present study, a FISH cocktail of whole chromosome paints for chromosomes 1, 4 and 11 was used. A significant association between frequency of translocations and accumulated doses was also observed (P < 0.001). Within the control group, a correlation was found between age and the spontaneous frequency of translocations. No correlation was found between smoking status and frequency of translocations. When compared with the control group, workers with accumulated doses up to 100 mSv showed no increase in genome translocation frequency, whereas workers with accumulated doses from 101 to 200 mSv showed a statistically significant doubling of genome translocation frequency (P = 0.009). Thus, in cases of chronic exposure and for purposes of retrospective dosimetry, the genome frequency of translocations is a more useful marker for evaluation of genotoxic effects than dicentric frequency.


Subject(s)
Biological Assay/statistics & numerical data , Chromosome Aberrations/radiation effects , Chromosome Aberrations/statistics & numerical data , In Situ Hybridization, Fluorescence/statistics & numerical data , Nuclear Power Plants/statistics & numerical data , Radiation Injuries/epidemiology , Adolescent , Adult , Aged , Alcohol Drinking/epidemiology , Azure Stains , Biological Assay/methods , Bulgaria/epidemiology , Comorbidity , Cytogenetic Analysis/statistics & numerical data , Dose-Response Relationship, Radiation , Female , Humans , Male , Middle Aged , Occupational Exposure , Prevalence , Radiation Dosage , Reproducibility of Results , Risk Assessment , Sensitivity and Specificity , Smoking/epidemiology , Young Adult
8.
Health Phys ; 98(2): 252-7, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20065690

ABSTRACT

This paper details the construction of a 137Cs gamma calibration curve that has been established for dicentric assay and the testing and validation of the curve through biological dosimetry in three situations of suspected workplace overexposure that arose accidentally or through negligence or lack of appropriate safety measures. The three situations were: (1) suspected 137Cs contamination in a factory air supply; (2) suspected exposure to an industrial 192Ir source; and (3) accidental exposure of construction workers to radiation from a 60Co radiotherapy source in a hospital medical physics department. From a total of 24 potentially-exposed subjects, only one worker was found to have a statistically significant dose (0.16 Gy, 95% confidence intervals 0.02-0.43 Gy). In all other cases, the main function of the biological dosimetry was to reassure the subjects that any dose received was low.


Subject(s)
Biological Assay/methods , Body Burden , Chromosome Aberrations/radiation effects , Environmental Exposure/analysis , Micronucleus Tests/methods , Radioactive Hazard Release , Radiometry/methods , Bulgaria , Humans , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
9.
Biol Reprod ; 66(6): 1781-3, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12021062

ABSTRACT

Research over the past few years has clearly demonstrated that infertile men have an increased frequency of chromosome abnormalities in their sperm. These studies have been further corroborated by an increased frequency of chromosome abnormalities in newborns and fetuses from pregnancies established by intracytoplasmic sperm injection. Most studies have considered men with any type of infertility. However, it is possible that some types of infertility have an increased risk of sperm chromosome abnormalities, whereas others do not. We studied 10 men with a specific type of infertility, asthenozoospermia (poor motility), by multicolor fluorescence in situ hybridization analysis to determine whether they had an increased frequency of disomy for chromosomes 13, 21, XX, YY, and XY, as well as diploidy. The patients ranged in age from 28 to 42 yr (mean 34.1 yr); they were compared with 18 normal control donors whose ages ranged from 23 to 58 yr (mean 35.6 yr). A total of 201 416 sperm were analyzed in the men with asthenozoospermia, with a minimum of 10 000 sperm analyzed per chromosome probe per donor. There was a significant increase in the frequency of disomy in men with asthenozoospermia compared with controls for chromosomes 13 and XX. Thus, this study indicates that infertile men with poorly motile sperm but normal concentration have a significantly increased frequency of sperm chromosome abnormalities.


Subject(s)
Chromosome Aberrations , Infertility, Male/genetics , Spermatozoa/abnormalities , Spermatozoa/ultrastructure , Adult , Chromosomes, Human, Pair 13 , Chromosomes, Human, Pair 21 , Chromosomes, Human, X , Chromosomes, Human, Y , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Sex Chromosome Aberrations , Sperm Motility
SELECTION OF CITATIONS
SEARCH DETAIL