Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
FASEB J ; 38(1): e23399, 2024 01.
Article in English | MEDLINE | ID: mdl-38174870

ABSTRACT

Dyslipidemia is characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and TG-rich lipoprotein (TGRLs) in circulation, and is closely associated with the incidence and development of cardiovascular disease. Angiopoietin-like protein 3 (ANGPTL3) deficiency has been identified as a cause of familial combined hypolipidemia in humans, which allows it to be an important therapeutic target for reducing plasma lipids. Here, we report the discovery and characterization of a novel fully human antibody F1519-D95aA against N-terminal ANGPTL3 (NT-ANGPTL3), which potently inhibits NT-ANGPTL3 with a KD as low as 9.21 nM. In hyperlipidemic mice, F1519-D95aA shows higher apolipoprotein B (ApoB) and TG-lowering, and similar LDL-C reducing activity as compared to positive control Evinacumab (56.50% vs 26.01% decrease in serum ApoB levels, 30.84% vs 25.28% decrease in serum TG levels, 23.32% vs 22.52% decrease in serum LDLC levels, relative to vehicle group). Molecular docking and binding energy calculations reveal that the F1519-D95aA-ANGPTL3 complex (10 hydrogen bonds, -65.51 kcal/mol) is more stable than the Evinacumab-ANGPTL3 complex (4 hydrogen bonds, -63.76 kcal/mol). Importantly, F1519-D95aA binds to ANGPTL3 with different residues in ANGPTL3 from Evinacumab, suggesting that F1519-D95aA may be useful for the treatment of patients resistant to Evinacumab. In conclusion, F1519-D95aA is a novel fully human anti-NT-ANGPTL3 antibody with potent plasma ApoB, TG, and LDL-C lowering activities, which can potentially serve as a therapeutic agent for hyperlipidemia and relevant cardiovascular diseases.


Subject(s)
Bacteriophages , Cardiovascular Diseases , Hyperlipidemias , Metabolic Diseases , Humans , Mice , Animals , Angiopoietin-Like Protein 3 , Cholesterol, LDL , Angiopoietin-like Proteins/metabolism , Hyperlipidemias/drug therapy , Molecular Docking Simulation , Triglycerides , Apolipoproteins B
2.
Int J Mol Sci ; 18(10)2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28953230

ABSTRACT

Agonistic antibodies, which bind specifically to death receptor 5 (DR5), can trigger apoptosis in tumor cells through the extrinsic pathway. In this present study, we describe the use of a phage display to isolate a novel fully human agonistic single chain fragment variable (scFv) antibody, which targets DR5. After five rounds of panning a large (1.2 × 108 clones) phage display library on DR5, a total of over 4000 scFv clones were screened by the phage ELISA. After screening for agonism in a cell-viability assay in vitro, a novel DR5-specific scFv antibody TR2-3 was isolated, which inhibited COLO205 and MDA-MB-231 tumor cell growth without any cross-linking agents. The activity of TR2-3 in inducing apoptosis in cancer cells was evaluated by using an Annexin V-PE apoptosis detection kit in combination with flow cytometry and the Hoechst 33342 and propidium iodide double staining analysis. In addition, the activation of caspase-dependent apoptosis was evaluated by Western blot assays. The results indicated that TR2-3 induced robust apoptosis of the COLO205 and MDA-MB-231 cells in a dose-dependent and time-dependent manner, while it remarkably upregulated the cleavage of caspase-3 and caspase-8. Furthermore, TR2-3 suppressed the tumor growth significantly in the xenograft model. Taken together, these data suggest that TR2-3 exhibited potent antitumor activity both in vitro and in vivo. This work provides a novel human antibody, which might be a promising candidate for cancer therapy by targeting DR5.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Neoplasms/metabolism , Neoplasms/pathology , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Single-Chain Antibodies/pharmacology , Amino Acid Sequence , Animals , Antibody Specificity , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Disease Models, Animal , Female , Humans , Mice , Neoplasms/drug therapy , Peptide Library , Protein Binding , Protein Interaction Domains and Motifs , Receptors, TNF-Related Apoptosis-Inducing Ligand/chemistry , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Xenograft Model Antitumor Assays
3.
EBioMedicine ; 65: 103250, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33647772

ABSTRACT

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) levels by facilitating the degradation of the LDL receptor (LDLR) and is an attractive therapeutic target for hypercholesterolemia intervention. Herein, we generated a novel fully human antibody with favourable druggability by utilizing phage display-based strategy. METHODS: A potent single-chain variable fragment (scFv) named AP2M21 was obtained by screening a fully human scFv phage display library with hPCSK9, and performing two in vitro affinity maturation processes including CDR-targeted tailored mutagenesis and cross-cloning. Thereafter, it was transformed to a full-length Fc-silenced anti-PCSK9 antibody FAP2M21 by fusing to a modified human IgG1 Fc fragment with L234A/L235A/N297G mutations and C-terminal lysine deletion, thus eliminating its immune effector functions and mitigating mAb heterogeneity. FINDINGS: Our data showed that the generated full-length anti-PCSK9 antibody FAP2M21 binds to hPCSK9 with a KD as low as 1.42 nM, and a dramatically slow dissociation rate (koff, 4.68 × 10-6 s-1), which could be attributed to its lower binding energy (-47.51 kcal/mol) than its parent counterpart FAP2 (-30.39 kcal/mol). We verified that FAP2M21 potently inhibited PCSK9-induced reduction of LDL-C uptake in HepG2 cells, with an EC50 of 43.56 nM. Further, in hPCSK9 overexpressed C57BL/6 mice, a single tail i.v. injection of FAP2M21 at 1, 3 and 10 mg/kg, dose-dependently up-regulated hepatic LDLR levels, and concomitantly reduced serum LDL-C by 3.3% (P = 0.658, unpaired Student's t-test), 30.2% (P = 0.002, Mann-Whitney U-test) and 37.2% (P = 0.002, Mann-Whitney U-test), respectively. INTERPRETATION: FAP2M21 with potent inhibitory effect on PCSK9 may serve as a promising therapeutic agent for treating hypercholesterolemia and associated cardiovascular diseases.


Subject(s)
Antibodies/immunology , Peptides/metabolism , Proprotein Convertase 9/metabolism , Animals , Antibodies/therapeutic use , Antigen-Antibody Reactions , Cholesterol, LDL/blood , Hep G2 Cells , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/pathology , Kinetics , Male , Mice , Mice, Inbred C57BL , Mutagenesis , Peptide Library , Peptides/genetics , Peptides/pharmacology , Peptides/therapeutic use , Proprotein Convertase 9/genetics , Proprotein Convertase 9/immunology , Protein Binding , Receptors, LDL/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Single-Chain Antibodies/genetics , Single-Chain Antibodies/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL