Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemphyschem ; 14(12): 2772-6, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23776039

ABSTRACT

A solution-processed anthradithiophene derivative, 5,11-bis(4-triethylsilylphenylethynyl)anthradithiophene (TESPE-ADT), is studied for use as the semiconducting material in thin-film transistors (TFTs). To enhance the electrical performance of the devices, two different kinds of solution processing (spin-coating and drop-casting) on various gate dielectrics as well as additional post-treatment are employed on thin films of TESPE-ADT, and p-channel OTFT transport with hole mobilities as high as ~0.12 cm(2) V(-1) s(-1) are achieved. The film morphologies and formed microstructures of the semiconductor films are characterized in terms of film processing conditions and are correlated with variations in device performance.

2.
Chem Commun (Camb) ; (14): 1846-8, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-19319421

ABSTRACT

A facile one-pot [1+1+1] synthesis of dithieno[2,3-b:3',2'-d]thiophene (; ) has been achieved, enabling the efficient realization of a new DTT-based semiconductor series for organic thin-film transistors (OTFTs).

3.
Langmuir ; 25(17): 9887-93, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19518130

ABSTRACT

In situ scanning tunneling microscope (STM) was used to examine the spatial structures of pentacene molecules adsorbed onto a Au(111) single-crystal electrode from a benzene dosing solution containing 16-400 microM pentacene. Molecular-resolution STM imaging conducted in 0.1 M HClO(4) revealed highly ordered pentacene structures of ( radical31 x radical31)R8.9 degrees , (3 x 10), ( radical31 x 10), and ( radical7 x 2 radical7)R19.1 degrees adsorbed on the reconstructed Au(111) electrode dosed with different pentacene solutions. These pentacene structures and the reconstructed Au(111) substrate were stable between 0.2 and 0.8 V [vs reversible hydrogen electrode, RHE]. Increasing the potential to E > 0.8 V lifted the reconstructed Au(111) surface and disrupted the ordered pentacene adlattices simultaneously. Ordered pentacene structures could be restored by applying potentials negative enough to reinforce the reconstructed Au(111). At potentials negative of 0.2 V, the adsorption of protons became increasingly important to displace adsorbed pentacene admolecules. Although the reconstructed Au(111) structure was not essential to produce ordered pentacene adlayers, it seemed to help the adsorption of pentacene molecules in a long-range ordered pattern. At room temperature (25 degrees C), approximately 100 pentacene molecules seen in STM images could rotate and align themselves to a neighboring domain in 10 s, suggesting that pentacene admolecules could be mobile on Au(111) under the STM imaging conditions of -150 mV in bias voltage and 1 nA in feedback current.

SELECTION OF CITATIONS
SEARCH DETAIL