ABSTRACT
Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.
Subject(s)
Evolution, Molecular , Genome, Plant , Phylogeny , Polyploidy , Chromosomes, Plant/genetics , Gene DuplicationABSTRACT
BACKGROUND: A phase II trial (EC-CRT-001) demonstrated the promising efficacy of combining toripalimab (an anti-PD-1 antibody) with definitive chemoradiotherapy (CRT) for locally advanced oesophageal squamous cell carcinoma (ESCC). Biomarkers are key to identifying patients who may benefit from this therapeutic approach. METHODS: Of the 42 patients with ESCC who received toripalimab combined with definitive CRT, 37 were included in this analysis. Baseline assessments included PET/CT metabolic parameters (SUVmax, SUVmean, SUVpeak, MTV, and TLG), RNA sequencing of tumour biopsies to quantify the tissue mutational burden (TMB), and multiplex immunofluorescence staining to estimate immune cell infiltration in the tumour microenvironment (TME). Frozen neoplastic samples were procured for RNA sequencing to further explore the immune-related TME. RESULTS: Among the 37 patients, high baseline SUVmax (≥12.0; OR = 6.5, 95% CI 1.4-48.2, p = 0.032) and TLG (≥121.8; OR = 6.8, 95% CI 1.6-33.5, p = 0.012) were significantly correlated with lower complete response rates. All five PET/CT parameters were notably associated with overall survival; only SUVmax and TLG were associated with a significantly worse progression-free survival. A trend towards an inverse correlation was observed between SUVmax and TMB (R = -0.33, p = 0.062). PD-1 + CD8 + T cell infiltration was negatively correlated with MTV (R = -0.355, p = 0.034) and TLG (R = -0.385, p = 0.021). Moreover, RNA sequencing revealed that the high TLG subgroup exhibited low immune cell infiltration, indicating an immunosuppressive landscape. CONCLUSIONS: High baseline SUVmax and TLG might predict poorer treatment response and worse survival in patients with ESCC undergoing immunotherapy combined with CRT. In addition, high PET/CT metabolic parameters, particularly TLG, were correlated with an immunosuppressive TME, which warrants further exploration.
Subject(s)
Chemoradiotherapy , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immunotherapy , Positron Emission Tomography Computed Tomography , Tumor Microenvironment , Humans , Positron Emission Tomography Computed Tomography/methods , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Esophageal Squamous Cell Carcinoma/pathology , Male , Female , Chemoradiotherapy/methods , Middle Aged , Esophageal Neoplasms/therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/immunology , Aged , Prognosis , Immunotherapy/methods , Antibodies, Monoclonal, Humanized/therapeutic use , AdultABSTRACT
A multicolor electrochemiluminescence (ECL) biosensor based on a closed bipolar electrode (BPE) array was proposed for the rapid and intuitive analysis of three prostate cancer staging indicators. First, [Irpic-OMe], [Ir(ppy)2(acac)], and [Ru(bpy)3]2+ were applied as blue, green, and red ECL emitters, respectively, whose mixed ECL emission colors covered the whole visible region by varying the applied voltages. Afterward, we designed a simple Mg2+-dependent DNAzyme (MNAzyme)-driven tripedal DNA walker (TD walker) to release three output DNAs. Immediately after, three output DNAs were added to the cathodic reservoirs of the BPE for incubation. After that, we found that the emission colors from the anode of the BPE changed as a driving voltage of 8.0 V was applied, mainly due to changes in the interfacial potential and faradaic currents at the two poles of the BPE. Via optimization of the experimental parameters, cutoff values of such three indicators at different clinical stages could be identified instantly with the naked eye, and standard precision swatches with multiple indicators could be prepared. Finally, in order to precisely determine the prostate cancer stage, the multicolor ECL device was used for clinical analysis, and the resulting images were then compared with standard swatches, laying the way for accurate prostate cancer therapy.
Subject(s)
Biosensing Techniques , Prostatic Neoplasms , Male , Humans , Luminescent Measurements/methods , Photometry , Prostatic Neoplasms/diagnosis , Prostate-Specific Antigen , DNA , Biosensing Techniques/methods , Electrodes , Electrochemical Techniques/methodsABSTRACT
AIM: To synthesize available evidence about core competencies for nurses engaged in palliative care. DESIGN: A scoping review conducted according to the framework from Joanna Briggs Institute. METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews checklist was adopted to report this scoping review. The PubMed, Web of Science, Embase, ScienceDriect, CNKI, WangFang, VIP and Sinomed databases were used to systematically search for published studies from their inception to December 2023. Two researchers independently screened and selected relevant studies and performed the data charting. RESULTS: Twenty-six studies were included in this scoping review. Among these, 14 studies identified core competency assessment instruments among nurses engaged in palliative care, with the Palliative Care Core Competence Questionnaire was used most frequently; 13 studies investigated the status of core competencies of nurses engaged in palliative care, the majority of included studies indicated that nurse's core competencies were at moderate levels; 11 studies explored the factors influencing the core competencies of the nurses engaged in palliative care, which were classified as sociodemographic-related factors, palliative care education-related factors, death attitude, palliative care practice-related experience and others. CONCLUSION: This scoping review offers a comprehensive overview of the current landscape of core competencies among nurses in palliative care. Findings suggested that the clinical nursing leaders need to develop tailored strategies and interventions to address specific factors and promote the continuous development of nurses' competencies in palliative care. RELEVANCE TO CLINICAL PRACTICE: Core competency assessment instruments equip nurses and healthcare organizations with a range of validated tools for evaluating their proficiency in palliative care. Targeted core competency enhancement programmes need to be developed to foster a nursing workforce better equipped to improve the quality of life of end-of-life patients and their families. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.
Subject(s)
Clinical Competence , Palliative Care , Humans , Clinical Competence/standards , Palliative Care/standards , Hospice and Palliative Care Nursing/standards , Surveys and QuestionnairesABSTRACT
Nanofibers were prepared by electrospinning a mixture of polycaprolactone and silica, and modified to improve the hydrophilicity and stability of the material and to degrade nitrogenous wastewater by adsorbing heterotrophic nitrifying aerobic denitrifying (Ochrobactrum anthropic). The immobilized bacteria showed highly efficient simultaneous nitrification-denitrification ability, which could convert nearly 90 % of the initial nitrogen into gaseous nitrogen under aerobic conditions, and the average TN removal rate reached 5.59 mg/L/h. The average ammonia oxidation rate of bacteria immobilized by modified nanofibers was 7.36 mg/L/h, compared with 6.3 mg/L/h for free bacteria and only 4.23 mg/L/h for unmodified nanofiber-immobilized bacteria. Kinetic studies showed that modified nanofiber-immobilized bacteria complied with first-order degradation kinetics, and the effects of extreme pH, temperature, and salinity on immobilized bacteria were significantly reduced, while the degradation rate of free bacteria produced larger fluctuations. In addition, the immobilized bacterial nanofibers were reused five times, and the degradation rate remained stable at more than 80 %. At the same time, the degradation rate can still reach 50 % after 6 months of storage at 4 °C. It also demonstrated good nitrogen removal in practical wastewater treatment.
Subject(s)
Nanofibers , Wastewater , Denitrification , Nitrites/metabolism , Nitrogen/metabolism , Kinetics , Aerobiosis , Nitrification , Bacteria/metabolism , Heterotrophic ProcessesABSTRACT
Carotenoids are tetraterpene compounds acting as precursors to vitamin A, with functions that include protecting eyesight, enhancing immunity, promoting cell growth and differentiation, and providing antioxidative benefits. Lycopene, ß-carotene, and astaxanthin are particularly critical for health and have diverse applications in food, health products, and medicine. However, natural carotenoids are encased within cell structures, necessitating mechanical methods to disrupt the cell wall for their extraction and purification-a process often influenced by environmental conditions. Thus, improving the efficiency of carotenoid extraction from natural resources is of great interest. This review delves into the research progress made on the extraction processes, structures, and biological functions of carotenoids, focusing on lycopene, ß-carotene, and astaxanthin. Traditional extraction methods primarily involve organic solvent-assisted mechanical crushing. With deeper research and technological advancements, more environmentally friendly solvents, advanced machinery, and suitable methods are being employed to enhance the extraction and purification of carotenoids. These improvements have significantly increased extraction efficiency, reduced preparation time, and lowered production costs, laying the groundwork for new carotenoid product developments.
Subject(s)
Lycopene , Xanthophylls , beta Carotene , beta Carotene/chemistry , beta Carotene/isolation & purification , Xanthophylls/isolation & purification , Xanthophylls/chemistry , Lycopene/chemistry , Lycopene/isolation & purification , Carotenoids/chemistry , Carotenoids/isolation & purification , Solvents/chemistryABSTRACT
BACKGROUND: Toripalimab is a PD-1 inhibitor that is approved for the treatment of advanced oesophageal squamous cell carcinoma, but its efficacy in locally advanced disease is unclear. We administered toripalimab with definitive chemoradiotherapy to patients with unresectable locally advanced oesophageal squamous cell carcinoma, and aimed to investigate the activity and safety of this regimen, and potential biomarkers. METHODS: EC-CRT-001 was a single-arm, phase 2 trial done at Sun Yat-sen University Cancer Center (Guangzhou, China). Patients aged 18-70 years with untreated, unresectable, stage I-IVA oesophageal squamous cell carcinoma, with an ECOG performance status of 0-2, and adequate organ and bone marrow function were eligible for inclusion. Patients received concurrent thoracic radiotherapy (50·4 Gy in 28 fractions), chemotherapy (five cycles of weekly intravenous paclitaxel [50 mg/m2] and cisplatin [25 mg/m2]), and toripalimab (240 mg intravenously every 3 weeks for up to 1 year, or until disease progression or unacceptable toxicity). The primary endpoint was the complete response rate at 3 months after radiotherapy by investigator assessment. Secondary endpoints were overall survival, progression-free survival, duration of response, quality of life (not reported here), and safety. All enrolled patients were included in the activity and safety analyses. The trial is registered with ClinicalTrials.gov, NCT04005170; enrolment is completed and follow-up is ongoing. FINDINGS: Between Nov 12, 2019, and Jan 25, 2021, 42 patients were enrolled. The median age was 56 years (IQR 53-63), 39 (93%) of 42 patients had stage III or IVA disease, and 32 (76%) patients were male and 10 (24%) were female. 40 (95%) of 42 patients completed the planned chemoradiotherapy and 26 (62%; 95% CI 46-76) of 42 had a complete response. The median duration of response was 12·1 months (95% CI 5·9-18·2). After a median follow-up of 14·9 months (IQR 11·9-18·4), 1-year overall survival was 78·4% (95% CI 66·9-92·0) and 1-year progression-free survival was 54·5% (41·3-72·0). The most common grade 3 or worse adverse event was lymphopenia (36 [86%] of 42). One (2%) patient died from treatment-related pneumonitis. INTERPRETATION: Combining toripalimab with definitive chemoradiotherapy provided encouraging activity and acceptable toxicity in patients with locally advanced oesophageal squamous cell carcinoma, and this regimen warrants further investigation. FUNDING: National Natural Science Foundation of China and Sci-Tech Project Foundation of Guangzhou. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.
Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Male , Female , Middle Aged , Esophageal Squamous Cell Carcinoma/therapy , Quality of Life , Fluorouracil , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chemoradiotherapy/adverse effectsABSTRACT
Nematodes are the most abundant multi-cellular animals in soil, influencing key processes and functions in terrestrial ecosystems. Yet, little is known about the drivers of nematode abundance and diversity in forest soils across climatic zones. This is despite forests covering approximately 30% of the Earth's land surface, providing many crucial ecosystem services but strongly varying in climatic conditions and associated ecosystem properties across biogeographic zones. Here, we collected nematode samples from 13 forests across a latitudinal gradient. We divided this gradient into temperate, warm-temperate and tropical climatic zones and found that, across the gradient, nematode abundance and diversity were mainly influenced by soil organic carbon content. However, mean annual temperature and total soil phosphorus content in temperate zones, soil pH in warm-temperate zones, and mean annual precipitation in tropical zones were more important in driving nematode alpha-diversity, biomass and abundance. Additionally, nematode beta-diversity was higher in temperate than in warm-temperate and tropical zones. Together, our findings demonstrate that the drivers of nematode diversity in forested ecosystems are affected by the spatial scale and climatic conditions considered. This implies that high resolution studies are needed to accurately predict how soil functions respond if climate conditions move beyond the coping range of soil organisms.
Subject(s)
Ecosystem , Nematoda , Animals , Soil , Carbon , ForestsABSTRACT
PoDPBT, an O-benzoyltransferase belonging to the BAHD family, can catalyze the benzoylation of 8-debenzoylpaeoniflorin to paeoniflorin. PoDPBT is the first enzyme demonstrated to be involved in the modification stage of paeoniflorin biosynthesis. DFGGG, a new DFGWG-like motif, was revealed in the BAHD family. The transcriptome database provides a resource for further investigation of other enzyme genes involved in paeoniflorin biosynthesis.
Subject(s)
Paeonia , Paeonia/genetics , Acyltransferases/genetics , Monoterpenes , CatalysisABSTRACT
Tanshinone â ¡A (Tâ ¡A), a diterpene quinone with a furan ring, is a bioactive compound found in the medicinal herb redroot sage (Salvia miltiorrhiza Bunge), in which both furan and dihydrofuran analogs are present in abundance. Progress has been made recently in elucidating the tanshinone biosynthetic pathway, including heterocyclization of the dihydrofuran D-ring by cytochrome P450s; however, dehydrogenation of dihydrofuran to furan, a key step of furan ring formation, remains uncharacterized. Here, by differential transcriptome mining, we identified six 2-oxoglutarate-dependent dioxygenase (2-ODD) genes whose expressions corresponded to tanshinone biosynthesis. We showed that Sm2-ODD14 acts as a dehydrogenase catalyzing the furan ring aromatization. In vitro Sm2-ODD14 converted cryptotanshinone to Tâ ¡A and thus was designated Tâ ¡A synthase (SmTâ ¡AS). Furthermore, SmTâ ¡AS showed a strict substrate specificity, and repression of SmTâ ¡AS expression in hairy root by RNAi led to increased accumulation of total dihydrofuran-tanshinones and decreased production of furan-tanshinones. We conclude that SmTâ ¡AS controls the metabolite flux from dihydrofuran- to furan-tanshinones, which influences medicinal properties of S. miltiorrhiza.
Subject(s)
Dioxygenases/genetics , Dioxygenases/metabolism , Diterpenes/metabolism , Furans/metabolism , Plants, Medicinal/metabolism , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Plant , Genes, Plant , Plant Roots/metabolismABSTRACT
Using the first-principles method, a new structure of monolayer h-CSe was predicted, exhibiting good dynamical and thermal stability. The geometrical, electronic and optical properties of monolayer h-CSe are examined at the HSE level. Furthermore, the influences of the in-plane strain and layer number on the electric properties of the two dimensional h-CSe material are studied. The results indicate that it possesses an indirect band gap, which exhibits a rich variety of behaviors depending on the small in-plane biaxial strain. The band gap of monolayer h-CSe could be easily tuned in the energy range from 0.82 eV to 2.61 eV under small in-plane biaxial strain (from -3% to 3%). Also, a band gap transition between direct and indirect types is not found. The band gap of the h-CSe materials decreases with the increase of their layer number. In addition, it was found that these h-CSe materials show excellent optical properties, including strong light harvesting ability for the ultra-violet light range of the solar spectrum. The results obtained here indicate that monolayer h-CSe may have significant potential applications in future nanoelectronic fields.
ABSTRACT
Multifunctional electronic devices that combine logic operation and data storage functions are of great importance in developing next-generation computation. The recent development of van der Waals (vdW) heterostructures based on various two-dimensional (2D) materials have brought exceptional opportunities in designing novel electronic devices. Although various 2D-heterostructure-based electronic devices have been reported, multifunctional devices that can combine logic operations and data storage functions are still quite rare. In this work, we design and fabricate a half-floating-gate field-effect transistor based on MoS2-BN-graphene vdW heterostuctures, which can be used for logic operations as a MOSFET, nonvolatile memory as a floating-gate MOSFET (FG-MOSFET), and rectification as a diode. These results could lay the foundation for various applications based on 2D vdW heterostuctures and inspire the design of next-generation computation beyond the von Neumann architecture.
ABSTRACT
In this work, a new electrochemiluminescence (ECL) platform was constructed for detecting the prostate cancer marker microRNA-141 (miRNA-141) on a constant resistor-integrated closed bipolar electrode (BPE). It consisted of two reservoirs and a constant resistor, and both ends were connected to the anode of the driving electrode and the cathode of BPE. The cathode of BPE was modified with boron nitride quantum dots (BNQDs), and the anode reservoir was the [Ru(bpy)3](PF6)2/TPrA system. After introducing a certain amount of hairpin DNA 3 (H3) and ferrocene-labeled single-stranded DNA (Fc-ssDNA) on the surface of the BNQDs, the ECL emission signal of the BNQDs was difficult to be observed by the naked eye, while [Ru(bpy)3](PF6)2 emitted a strong and visible ECL signal. In the presence of the target, bipedal DNA assembled by catalytic hairpin assembly (CHA) took away the Fc-ssDNA and the ECL intensity of the BNQDs was enlarged, and as the concentration of miRNA-141 increased to the cutoff value, yellow-green light was visible by the naked eye. Meanwhile, the red emission signal of [Ru(bpy)3](PF6)2/TPrA became weakened. Thus, an ultrasensitive "color switch" ECL biosensor for detection of miRNA-141 was constructed and endowed with a wide linear range from 10-17 to 10-7 M and a detection limit of 10-17 M (S/N = 3). This study provides the potential for investigating portable devices in the detection of low-concentration nucleic acids.
Subject(s)
Biosensing Techniques , MicroRNAs , DNA , Electrochemical Techniques , Electrodes , Luminescent Measurements , MicroRNAs/analysisABSTRACT
The medicinal plant Scutellaria baicalensis Georgi is rich in specialized 4'-deoxyflavones, which are reported to have many health-promoting properties. We assayed Scutellaria flavones with different methoxyl groups on human cancer cell lines and found that polymethoxylated 4'-deoxyflavones, like skullcapflavone I and tenaxin I have stronger ability to induce apoptosis compared to unmethylated baicalein, showing that methoxylation enhances bioactivity as well as the physical properties of specialized flavones, while having no side-effects on healthy cells. We investigated the formation of methoxylated flavones and found that two O-methyltransferase (OMT) families are active in the roots of S. baicalensis. The Type II OMTs, SbPFOMT2 and SbPFOMT5, decorate one of two adjacent hydroxyl groups on flavones and are responsible for methylation on the C6, 8 and 3'-hydroxyl positions, to form oroxylin A, tenaxin II and chrysoeriol respectively. The Type I OMTs, SbFOMT3, SbFOMT5 and SbFOMT6 account mainly for C7-methoxylation of flavones, but SbFOMT5 can also methylate baicalein on its C5 and C6-hydroxyl positions. The dimethoxylated flavone, skullcapflavone I (found naturally in roots of S. baicalensis) can be produced in yeast by co-expressing SbPFOMT5 plus SbFOMT6 when the appropriately hydroxylated 4'-deoxyflavone substrates are supplied in the medium. Co-expression of SbPFOMT5 plus SbFOMT5 in yeast produced tenaxin I, also found in Scutellaria roots. This work showed that both type I and type II OMT enzymes are involved in biosynthesis of methoxylated flavones in S. baicalensis.
Subject(s)
Plants, Medicinal , Scutellaria baicalensis , Flavonoids/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Plant Roots/metabolism , Scutellaria baicalensis/chemistry , Scutellaria baicalensis/metabolismABSTRACT
Haemaphysalis longicornis is an obligate haematophagous ectoparasite, transmitting a variety of pathogens, which brings great damage to human health and animal husbandry development. Lipocalins (LIP) are a family of proteins that transport small hydrophobic molecules and also involve in immune regulation, such as the regulation of cell homeostasis, inhibiting the host's inflammatory response and resisting the contractile responses in host blood vessels. Therefore, it is one of the candidate antigens for vaccines. Based on previous studies, we constructed the recombinant plasmid pcDNA3.1-HlLIP of LIP homologue from H. longicornis (HlLIP). ELISA results showed that rabbits immunized with pcDNA3.1-HlLIP produced higher anti-rHlLIP antibody levels compared with the pcDNA3.1 group, indicating that pcDNA3.1-HlLIP induced the humoral immune response of host. Adult H. longicornis infestation trial in rabbits demonstrated that the engorgement weight, oviposition and hatchability of H. longicornis fed on rabbits immunized with pcDNA3.1-HlLIP decreased by 7.07%, 14.30% and 11.70% respectively, compared with that of the pcDNA3.1 group. In brief, DNA vaccine of pcDNA3.1-HlLIP provided immune protection efficiency of 30% in rabbits. This study demonstrated that pcDNA3.1-HlLIP can partially protect rabbits against H. longicornis, and it is possible to develop a new candidate antigen against ticks.
Subject(s)
Ixodidae , Tick Infestations , Ticks , Vaccines, DNA , Female , Rabbits , Humans , Animals , Vaccines, DNA/metabolism , Tick Infestations/prevention & control , Tick Infestations/veterinary , Lipocalins/metabolism , Ixodidae/metabolismABSTRACT
BACKGROUND: Paeonia ostii is a potentially important oilseed crop because its seed yield is high, and the seeds are rich in α-linolenic acid (ALA). However, the molecular mechanisms underlying ALA biosynthesis during seed kernel, seed testa, and fruit pericarp development in this plant are unclear. We used transcriptome data to address this knowledge gap. RESULTS: Gas chromatograph-mass spectrometry indicated that ALA content was highest in the kernel, moderate in the testa, and lowest in the pericarp. Therefore, we used RNA-sequencing to compare ALA synthesis among these three tissues. We identified 227,837 unigenes, with an average length of 755 bp. Of these, 1371 unigenes were associated with lipid metabolism. The fatty acid (FA) biosynthesis and metabolism pathways were significantly enriched during the early stages of oil accumulation in the kernel. ALA biosynthesis was significantly enriched in parallel with increasing ALA content in the testa, but these metabolic pathways were not significantly enriched during pericarp development. By comparing unigene transcription profiles with patterns of ALA accumulation, specific unigenes encoding crucial enzymes and transcription factors (TFs) involved in de novo FA biosynthesis and oil accumulation were identified. Specifically, the bell-shaped expression patterns of genes encoding SAD, FAD2, FAD3, PDCT, PDAT, OLE, CLE, and SLE in the kernel were similar to the patterns of ALA accumulation in this tissue. Genes encoding BCCP, BC, KAS I- III, and FATA were also upregulated during the early stages of oil accumulation in the kernel. In the testa, the upregulation of the genes encoding SAD, FAD2, and FAD3 was followed by a sharp increase in the concentrations of ALA. In contrast, these genes were minimally expressed (and ALA content was low) throughout pericarp development. CONCLUSIONS: We used three tissues with high, moderate, and low ALA concentrations as an exemplar system in which to investigate tissue-specific ALA accumulation mechanisms in P. ostii. The genes and TFs identified herein might be useful targets for future studies of ALA accumulation in the tree peony. This study also provides a framework for future studies of FA biosynthesis in other oilseed plants.
Subject(s)
Paeonia , alpha-Linolenic Acid , Fruit/genetics , Fruit/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Paeonia/genetics , Paeonia/metabolism , Plant Proteins/genetics , Seeds/genetics , Seeds/metabolism , TranscriptomeABSTRACT
Coenzyme Q (CoQ) is vital for energy metabolism in living organisms. In humans, CoQ10 deficiency causes diseases and must be replenished via diet; however, CoQ content in plant foods is primarily low. Here, we report the breeding of high CoQ10 tomato lines by expressing four enzymes with a fruit-specific promoter, which modifies the chloroplast chorismate pathway, enhances cytosolic isoprenoid biosynthesis, and up-regulates the first two reactions in mitochondrion that construct the CoQ10 polyisoprenoid tail. We show that, while the level of the aromatic precursor could be markedly elevated, head group prenylation is the key to increasing the final CoQ10 yield. In the HUCD lines expressing all four transgenes, the highest CoQ10 content (0.15 mg/g dry weight) shows a seven-fold increase from the wild-type level and reaches an extraordinarily rich CoQ10 food grade. Overviewing the changes in other terpenoids by transcriptome and metabolic analyses reveals variable contents of carotenoids and α-tocopherol in the HUCD lines. In addition to the enigmatic relations among different terpenoid pathways, high CoQ10 plants maintaining substantial levels of either vitamin can be selected. Our investigation paves the way for the development of CoQ10-enriched crops as dietary supplements.
Subject(s)
Solanum lycopersicum , Ubiquinone , Carotenoids/metabolism , Fruit/metabolism , Humans , Solanum lycopersicum/genetics , Mitochondria , Ubiquinone/geneticsABSTRACT
A novel time-resolved fluorescence (TRF) pobe is constructed to detect human serum albumin (HSA) by exploiting ZnGeO:Mn persistent luminescence nanorods (ZnGeO:Mn PLNRs) and polydopamine nanoparticles (PDA NPs). HSA-induced dynamic quenching leads to the fluorescence decrease of ZnGeO:Mn PLNRs, providing the basis for quantitative analysis of HSA. The excellent photo-thermal conversion performance of PDA NPs is helpful to the collision process between ZnGeO:Mn PLNRs and HSA, inducing significant improvement of sensitivity. HSA is quantified by measuring time-resolved fluorescence at 540 nm under excitation of 250-nm light. Under optimal conditions, HSA in the linear range 0.1-100 ng mL-1 are detected by this PDA-mediated ZnGeO:Mn probe with high sensitivity and selectivity, and the detection limit is 36 pg mL-1 (3σ/s). The RSD for the quantification of HSA (5 ng mL-1, n = 11) is 5.2%. The practicability of this TRF probe is confirmed by accurate monitoring HSA contents in urine samples, giving rise to satisfactory spiking recoveries of 96.2-106.0%.
Subject(s)
Fluorescence , Nanoparticles/therapeutic use , Nanotubes/analysis , Serum Albumin, Human/chemistry , HumansABSTRACT
Counter-current chromatography (CCC) target-guided by on-line HPLC with post-column DPPH assay was established for efficient screening and isolation of large amount of antioxidants from Eupatorium lindleyanum DC. On-line HPLC with post-column DPPH reaction was used to screen the antioxidants and optimize the biphasic solvent system of CCC, then the targeted peaks were purified using CCC. In the present study, three compounds, nepetin, cirsiliol and jaceosidin, were targeted and successively separated from n-butanol fraction of E. lindleyanum DC. by this strategy. All three compounds showed strong DPPH radical scavenging activity. These results confirmed that the strategy would be an efficient and effective method to isolate antioxidants from complex mixtures.
Subject(s)
Antioxidants , Eupatorium/chemistry , Flavones , Flavonoids , Antioxidants/chemistry , Antioxidants/isolation & purification , Chromatography, High Pressure Liquid , Flavones/chemistry , Flavones/isolation & purification , Flavonoids/chemistry , Flavonoids/isolation & purificationABSTRACT
LESSONS LEARNED: Weekly treatment with 5-fluorouracil and cisplatin, concurrent with radiotherapy, achieved promising response rates in patients with postoperative recurrent esophageal squamous cell carcinoma. Superior toxicity results were also found. BACKGROUND: Concurrent chemoradiotherapy (CCRT) is one of the treatment strategies for patients with esophageal squamous cell carcinoma (ESCC) with postoperative locoregional recurrence. However, the once every 3 weeks chemotherapy regimen causes a high incidence of toxicity. The aim of this study was to evaluate the efficacy and toxicity of weekly 5-fluorouracil (5-FU) and cisplatin concurrent with radiotherapy in postoperative locoregional recurrent ESCC. MATERIALS AND METHODS: Patients received four weekly chemotherapy cycles of cisplatin (25 mg/m2 , day 1) plus 5-FU (1,176 mg/m2 , day 1-3), and concurrent with radiotherapy (50.4-60 Gy). The primary endpoint was objective response rate (ORR). Secondary objectives were toxicity, disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). RESULTS: Between January 2013 and December 2015, 48 patients were enrolled. The ORR was 68.8% (12 patients with complete response, 21 patients with partial response), with DCR 68.8%. No treatment-related grade 4 adverse events occurred. Grade 3 hematologic toxicities were observed in eight (17%) patients. Grade 3 vomiting or esophagitis occurred in four (8%) patients each. The median PFS and OS were 13.94 months (95% confidence interval [CI], 0.75-51.05) and 27.43 months (95% CI, 5.278-49.58; Fig. 1). CONCLUSION: Weekly 5-FU and cisplatin concurrent with radiotherapy achieved a promising response rate and improved toxicity in patients with postoperative locoregional recurrent ESCC.