Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
BMC Vet Res ; 19(1): 171, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741960

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes enteric diseases in pigs leading to substantial financial losses within the industry. The absence of commercial vaccines and limited research on PDCoV vaccines presents significant challenges. Therefore, we evaluated the safety and immunogenicity of recombinant pseudorabies virus (PRV) rPRVXJ-delgE/gI/TK-S through intranasal mucosal immunization in weaned piglets and SPF mice. Results indicated that rPRVXJ-delgE/gI/TK-S safely induced PDCoV S-specific and PRV gB-specific antibodies in piglets, with levels increasing 7 days after immunization. Virus challenge tests demonstrated that rPRVXJ-delgE/gI/TK-S effectively improved piglet survival rates, reduced virus shedding, and alleviated clinical symptoms and pathological damage. Notably, the recombinant virus reduced anti-inflammatory and pro-inflammatory responses by regulating IFN-γ, TNF-α, and IL-1ß secretion after infection. Additionally, rPRVXJ-delgE/gI/TK-S colonized target intestinal segments infected with PDCoV, stimulated the secretion of cytokines by MLVS in mice, stimulated sIgA secretion in different intestinal segments of mice, and improved mucosal immune function. HE and AB/PAS staining confirmed a more complete intestinal mucosal barrier and a significant increase in goblet cell numbers after immunization. In conclusion, rPRVXJ-delgE/gI/TK-S exhibits good immunogenicity and safety in mice and piglets, making it a promising candidate vaccine for PDCoV.


Subject(s)
COVID-19 , Swine Diseases , Animals , Mice , Swine , Immunity, Mucosal , Administration, Intranasal/veterinary , COVID-19/veterinary , Vaccines, Synthetic , Intestines , Antibodies, Viral , Swine Diseases/prevention & control
2.
Microbiol Spectr ; 12(5): e0407123, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38511956

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the swine industry. Frequent mutations and recombinations account for PRRSV immune evasion and the emergence of novel strains. In this study, we isolated and characterized two novel PRRSV-2 strains from Southwest China exhibiting distinct recombination patterns. They were designated SCABTC-202305 and SCABTC-202309. Phylogenetic results indicated that SCABTC-202305 was classified as lineage 8, and SCABTC-202309 was classified as lineage 1.8. Amino acid mutation analysis identified unique amino acid substitutions and deletions in ORF5 and Nsp2 genes. The results of the recombination analysis revealed that SCABTC-202305 is a recombinant with JXA1 as the major parental strain and NADC30 as the minor parental strain. At the same time, SCABTC-202309 is identified as a recombinant with NADC30 as the major parental strain and JXA1 as the minor parental strain. In this study, we infected piglets with SCABTC-202305, SCABTC-202309, or mock inoculum (control) to study the pathogenicity of these isolates. Although both isolated strains were pathogenic, SCABTC-202305-infected piglets exhibited more severe clinical signs and higher mortality, viral load, and antibody response than SCABTC-202309-infected piglets. SCABTC-202305 also caused more extensive lung lesions based on histopathology. Our findings suggest that the divergent pathogenicity observed between the two novel PRRSV isolates may be attributed to variations in the genetic information encoded by specific genomic regions. Elucidating the genetic determinants governing PRRSV virulence and transmissibility will inform efforts to control this devastating swine pathogen.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) is one of the most critical pathogens impacting the global swine industry. Frequent mutations and recombinations have made the control of PRRSV increasingly difficult. Following the NADC30-like PRRSV pandemic, recombination events involving PRRSV strains have further increased. We isolated two novel field PRRSV recombinant strains, SCABTC-202305 and SCABTC-202309, exhibiting different recombination patterns and compared their pathogenicity in animal experiments. The isolates caused higher viral loads, persistent fever, marked weight loss, moderate respiratory clinical signs, and severe histopathologic lung lesions in piglets. Elucidating correlations between recombinant regions and pathogenicity in these isolates can inform epidemiologic tracking of emerging strains and investigations into viral adaptive mechanisms underlying PRRSV immunity evasion. Our findings underscore the importance of continued genomic surveillance to curb this economically damaging pathogen.


Subject(s)
Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Recombination, Genetic , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine respiratory and reproductive syndrome virus/isolation & purification , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , China , Virulence/genetics , Mutation , Genome, Viral/genetics
3.
Front Microbiol ; 14: 1121177, 2023.
Article in English | MEDLINE | ID: mdl-36910182

ABSTRACT

Introduction: Porcine circovirus 4 (PCV4) was discovered in 2019 and then proved to be pathogenic to piglets. Nevertheless, few studies were currently available about PCV4 infection in species other than pigs and there is no information about the prevalence of PCV4 in dogs. Methods: To fill this gap, 264 dog samples were collected from animal hospitals in the Southwest of China from 2021 to 2022 and screened for PCV4. Moreover, the complete genome of one PCV4 strain (SCABTC-Dog2022) were obtained successfully and shared a high identity (97.9-99.0%) with other PCV4 strains derived from pigs, dairy cows, raccoon dogs and foxes. The SCABTC-Dog2022 were analyzed together with 51 reference sequences. Results and Discussion: The detected results showed a low percentage of PCV-4 DNA (1.14%, 3/264), indicating that PCV4 could be identified in dogs in southwest China. Phylogenetic tree showed that SCABTC-Dog2022 strain derived from dog were clustered in a closed relative and geographically coherent branch with other PCV4 strains collected from four provinces (Sichuan, Fujian, Hunan and Inner Mongolia) of China. To our knowledge, it is the first detection of PCV4 in dogs globally. The association between PCV4 status and clinical syndromes in dogs deserves additional investigations.

SELECTION OF CITATIONS
SEARCH DETAIL