Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters

Affiliation country
Publication year range
1.
Molecules ; 29(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338482

ABSTRACT

Phlorizin, as a flavonoid from a wide range of sources, is gradually becoming known for its biological activity. Phlorizin can exert antioxidant effects by regulating the IL-1ß/IKB-α/NF-KB signaling pathway. At the same time, it exerts its antibacterial activity by reducing intracellular DNA agglutination, reducing intracellular protein and energy synthesis, and destroying intracellular metabolism. In addition, phlorizin also has various pharmacological effects such as antiviral, antidiabetic, antitumor, and hepatoprotective effects. Based on domestic and foreign research reports, this article reviews the plant sources, extraction, and biological activities of phlorizin, providing a reference for improving the clinical application of phlorizin.


Subject(s)
Glucosides , Phlorhizin , Phlorhizin/pharmacology , Phlorhizin/metabolism , Antioxidants/pharmacology , Flavonoids , Hypoglycemic Agents/pharmacology
2.
Opt Express ; 30(7): 11331-11344, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473080

ABSTRACT

Tornado waves (ToWs), which refer to a light that accelerates and twists over both the radial and the angular directions, have gained a great deal of interest since the concept was introduced by Brimis et al [Opt. Lett.45, 280 (2020)10.1364/OL.45.000280]. In this paper, we superimpose two pairs of ring swallowtail vortex beams (RSVBs) to generate ToWs and we call them tornado swallowtail waves (ToSWs). Each pair consists of RSVBs while carrying orbital angular momentum of opposite helicity and slightly different with the radius of the main ring of RSVBs. The waves spiral forward and reveal intensity maxima, exhibiting a tornado-like intensity profile during propagation. Meanwhile, the angular acceleration of the ToSWs is illustrated via tracing the angular position of the high-intensity main lobes. It is found that ToSWs present very high values of angular acceleration. Compared with typical tornado waves, ToSWs are more diverse and tunable, giving a new degree of freedom to tailor the propagation dynamics due to the flexibility of the swallowtail diffraction catastrophe. In addition, we confirm such waves experimentally and the results match well with the numerical ones. Also, we demonstrate the ability of optical manipulation of ToSWs for the first time in that they allow for particles not only to be trapped but also to be rotated. Finally, we analyze the poynting vectors and power exchange of ToSWs to demonstrate convincingly the physical mechanism.

3.
Opt Express ; 30(9): 14146-14160, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473165

ABSTRACT

The Talbot-like effect of symmetric Pearcey beams (SPBs) is presented numerically and experimentally in the free space. Owing to the Talbot-like effect, the SPBs have the property of periodic, multiple autofocusing and self-healing. Meanwhile, the focusing positions and focusing times of SPBs are controlled by the beam shift factor and the distribution factors. Furthermore, the beam shift factor can also affect the Talbot-like effect and the Talbot period. It is believed that the results can diversify the application of the Talbot effect.

4.
Opt Express ; 30(2): 1762-1772, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209330

ABSTRACT

We introduce a new type of multiple and off-axis optical bottles (OBs) based on the chirped circular Pearcey Gaussian vortex beam. This kind of beam allows the generation of the OBs with a perfect bottle shape through coherent superposition. Also, we show that the number and the position of the OBs can be precisely and flexibly controlled. The experimental results agree well with our numerical simulations, and we observe stable trapping of the mesocarbon microbeads particles by the proposed bottle beam.

5.
Opt Express ; 30(1): 232-242, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35201202

ABSTRACT

A new type of Airy beam arisen from the modification of Fourier spectrum is introduced numerically and experimentally. The autofocusing Airy beam (AAB) exhibits the features of off-axis autofocusing and transverse self-accelerating, producing a needle-like focus in the longitudinal direction and a tiny focal spot at the focusing plane. Furthermore, the focusing properties such as focusing position, focal spot size, focusing intensity and depth of focus can be adjusted by modulating parameters of the AAB. Experimental demonstrations of particle trapping and manipulation with the AAB are also presented. The number of trapped particles can be controlled by changing the focal spot size at the autofocusing plane. Our results offer practical applications in particle manipulation, fluorescent imaging technology, laser spectroscopy and so on.

6.
Opt Express ; 29(22): 35516-35531, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34808983

ABSTRACT

Paint layer was stripped from the 2024 aluminium alloy aircraft skin by either 1000 grit sandpaper or laser with 150 ps pulse width while the laser paint stripping (LPS) process was recorded by a high-speed camera. The surface and cross-section morphologies, chemical compositions and chemical valences of obtained the paint stripping samples were also characterise. The corrosion resistance was determined by the Potentiodynamic Polarization Curve (PPC). On mechanical paint stripping (MPS) samples, a large amount of scratches remained. Surface roughness increased and the oxide film was removed completely. The trace of the laser scan was observable on the surface of LPS samples. Recrystallisation occurred on the LPS surface and eventually formed arrayed micro and sub-micro structures. The oxide film is mainly composed of Al2O3 with a thickness about 2.10 µm. The corrosion current density of mechanical and LPS samples are 3.66 ×10-2 mA·cm-2 and 6.66×10-5 mA·cm-2, respectively. Comparing to MPS which removed all the oxide film and damaged the substrate metal, LPS only damaged the oxide film mildly without damaging metal substrate. The remaining oxide film contributes to a higher corrosion resistance of the LPS sample.

7.
Opt Express ; 29(11): 16270-16283, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154194

ABSTRACT

We derive analytical solutions that describe the one-dimensional displaced and chirped symmetric Pearcey Gaussian beam in a uniformly moving parabolic potential. The multiple effective manipulations of the beam, which are originated from the diverse configurations of the dynamic parabolic potential, are demonstrated. On the whole, the accelerating trajectory can transform into a linear superposition form of the oblique straight line and the simple harmonic motion. Meanwhile, we discuss the further modulation of the accelerating trajectory characteristics such as slope, amplitude and phase shift. Additionally, the extension into a two-dimensional scenario is also proposed. Our results theoretically improve the practical value of the Pearcey beam, and lead to potential applications in trajectory manipulation and particle manipulation.

8.
Opt Lett ; 46(10): 2461-2464, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33988610

ABSTRACT

In this Letter, a new, to the best of our knowledge, type of autofocusing and symmetric beam arisen from two quartic spectral phases is introduced in theory and experiment. The symmetric Pearcey Gaussian beam (SPGB), formed with a Gaussian term and two multiplying Pearcey integrals, processes a focusing intensity approximately 1.32 times stronger than the intensity of the symmetric Airy beam. Its four off-axis main lobes split into four bending trajectories symmetrically after focusing. The rectangular intensity distribution and the focal length of the SPGB can be adjusted by two kinds of distribution factors. Additionally, the vortex-guiding property of the beam is demonstrated by embedding an off-axis vortex into the SPGB, which can be applied in particle guiding.

9.
Appl Opt ; 60(23): 6730-6735, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34613149

ABSTRACT

In this paper, the propagation properties of the odd-Pearcey Gaussian beam (OPGB) in a parabolic potential are investigated analytically and numerically. Except for the auto-focusing at the focal plane, the OPGB performs a weak off-axis focusing unexpectedly. The focusing distance and the focal intensity can be adjusted by choosing an appropriate parabolic parameter. Also, the Poynting vector of the OPGB is demonstrated. In addition, we investigate the radiation forces of the OPGB and find that the trapping points can be generated during propagation.

10.
J Colloid Interface Sci ; 677(Pt A): 953-962, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39128289

ABSTRACT

Employing layered materials as the cathodes for solid-state batteries (SSBs) is vital in enhancing the batteries' energy density, whereas numerous issues are present regarding the compatibilities between cathode electrode and modified solid electrolyte (ME) in this battery configuration. By investigating the electrochemical performance and interfacial properties of SSBs using various cathodes, the fundamental reason for the poor compatibility between layered cathodes, especially LiCoO2 with ME is revealed. Because of the Li(solvent)+ intercalation environments formed in the ME, the resultant weak-interacted TFSI- could be adsorbed and destabilized by Co ions on the surface. Besides, the high energy level offsets between LiCoO2 and ME lead to Li-ion transferring from the bulk electrode to the electrolyte, resulting in a pre-formed interface on the cathode particles before the electric current is applied, affects the formation of effective cathode-electrolyte interface (CEI) film during electrochemical process and deteriorated overall battery performance. From this view, an interlayer is pre-added on the LiCoO2 surface through an electrostatic adsorption method, to adjust the energy level offsets between the cathode and ME, as well as isolate the direct contact of surface Co ions to TFSI-. The cycling properties of the SSB using modified LiCoO2 are greatly enhanced, and a capacity retention of 68.72 % after 100 cycles could be achieved, against 8.28 % previously, certifying the rationality of the understanding and the effectiveness of the proposed modification method. We believe this research could provide basic knowledge of the compatibility between layered cathodes and MEs, shedding light on designing more effective strategies for achieving SSBs with high energy density.

11.
Sci Adv ; 10(25): eadm7569, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896615

ABSTRACT

Realizing a multifunctional integrated photonic platform is one of the goals for future optical information processing, which usually requires large size to realize due to multiple integration challenges. Here, we realize a multifunctional integrated photonic platform with ultracompact footprint based on inverse design. The photonic platform is compact with 86 inverse designed-fixed couplers and 91 phase shifters. The footprint of each coupler is 4 µm by 2 µm, while the whole photonic platform is 3 mm by 0.2 mm-one order of magnitude smaller than previous designs. One-dimensional Floquet Su-Schrieffer-Heeger model and Aubry-André-Harper model are performed with measured fidelities of 97.90 (±0.52) % and 99.34 (±0.44) %, respectively. We also demonstrate a handwritten digits classification task with the test accuracy of 87% using on-chip training. Moreover, the scalability of this platform has been proved by demonstrating more complex computing tasks. This work provides an effective method to realize an ultrasmall integrated photonic platform.

SELECTION OF CITATIONS
SEARCH DETAIL