Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 533
Filter
Add more filters

Publication year range
1.
Cell ; 185(26): 4904-4920.e22, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36516854

ABSTRACT

Cells communicate with each other via receptor-ligand interactions. Here, we describe lentiviral-mediated cell entry by engineered receptor-ligand interaction (ENTER) to display ligand proteins, deliver payloads, and record receptor specificity. We optimize ENTER to decode interactions between T cell receptor (TCR)-MHC peptides, antibody-antigen, and other receptor-ligand pairs. A viral presentation strategy allows ENTER to capture interactions between B cell receptor and any antigen. We engineer ENTER to deliver genetic payloads to antigen-specific T or B cells to selectively modulate cellular behavior in mixed populations. Single-cell readout of ENTER by RNA sequencing (ENTER-seq) enables multiplexed enumeration of antigen specificities, TCR clonality, cell type, and states of individual T cells. ENTER-seq of CMV-seropositive patient blood samples reveals the viral epitopes that drive effector memory T cell differentiation and inter-clonal vs. intra-clonal phenotypic diversity targeting the same epitope. ENTER technology enables systematic discovery of receptor specificity, linkage to cell fates, and antigen-specific cargo delivery.


Subject(s)
Receptors, Antigen, T-Cell , Virus Internalization , Humans , Biology , Epitopes , Ligands , Peptides , Receptors, Antigen, T-Cell/metabolism , Single-Cell Analysis , Genomics
2.
Nat Immunol ; 25(8): 1411-1421, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38997431

ABSTRACT

A subset of individuals exposed to Mycobacterium tuberculosis (Mtb) that we refer to as 'resisters' (RSTR) show evidence of IFN-γ- T cell responses to Mtb-specific antigens despite serially negative results on clinical testing. Here we found that Mtb-specific T cells in RSTR were clonally expanded, confirming the priming of adaptive immune responses following Mtb exposure. RSTR CD4+ T cells showed enrichment of TH17 and regulatory T cell-like functional programs compared to Mtb-specific T cells from individuals with latent Mtb infection. Using public datasets, we showed that these TH17 cell-like functional programs were associated with lack of progression to active tuberculosis among South African adolescents with latent Mtb infection and with bacterial control in nonhuman primates. Our findings suggested that RSTR may successfully control Mtb following exposure and immune priming and established a set of T cell biomarkers to facilitate further study of this clinical phenotype.


Subject(s)
CD4-Positive T-Lymphocytes , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/immunology , Humans , Animals , Adolescent , Tuberculosis/immunology , Tuberculosis/microbiology , CD4-Positive T-Lymphocytes/immunology , Th17 Cells/immunology , Female , Macaca mulatta , Male , Phenotype , Interferon-gamma/metabolism , Interferon-gamma/immunology , Antigens, Bacterial/immunology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , South Africa , Young Adult , T-Lymphocytes, Regulatory/immunology , Adult
3.
Plant J ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101617

ABSTRACT

High temperature (HT) severely restricts plant growth, development, and productivity. Plants have evolved a set of mechanisms to cope with HT, including the regulation of heat stress transcription factors (Hsfs) and heat shock proteins (Hsps). However, it is not clear how the transcriptional and translational levels of Hsfs and Hsps are controlled in tomato. Here, we reported that the HT-induced transcription factor SlWRKY55 recruited SlVQ11 to coordinately regulate defense against HT. SlWRKY55 directly bound to the promoter of SlHsfA2 and promoted its expression, which was increased by SlVQ11. Moreover, both SlWRKY55 and SlVQ11 physically interacted with SlHsfA2 to enhance the transcriptional activity of SlHsfA2. Thus, our results revealed a molecular mechanism that the SlWRKY55/SlVQ11-SlHsfA2 cascade enhanced thermotolerance and provided potential target genes for improving the adaptability of crops to HT.

4.
Plant J ; 113(3): 546-561, 2023 02.
Article in English | MEDLINE | ID: mdl-36534116

ABSTRACT

The jasmonic acid (JA) signaling pathway is involved in the plant response to drought stress. JA and other hormones synergistically regulate the drought response in plants. However, the molecular mechanism underlying this synergism remains poorly defined. In the present study, transcriptome analyses of guard cells and quantitative PCR experiments revealed that MYC2 negatively regulated the negative regulator of ABA signaling, SlPP2C1, and the type-B response regulator in the cytokinin pathway, SlRR26, and this negative regulation was direct. SlRR26 overexpression reduced drought tolerance in transgenic tomatoes, whereas slrr26cr lines were more tolerant to drought. SlRR26 negatively modulated reactive oxygen species levels in stomata and stomatal closure through RobhB. Moreover, SlRR26 overexpression counteracted JA-mediated stomatal closure, suggesting that SlRR26 played a negative role in the JA-mediated drought response. These findings suggest that MYC2 plays a key role in JA-regulated stomatal closure under drought stress by inhibiting SlPP2C1 and SlRR26.


Subject(s)
Solanum lycopersicum , Transcription Factors , Transcription Factors/metabolism , Abscisic Acid/metabolism , Solanum lycopersicum/genetics , Osmoregulation , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Plant Stomata/physiology , Gene Expression Regulation, Plant , Plants/metabolism , Phosphoprotein Phosphatases/metabolism , Droughts
5.
BMC Plant Biol ; 24(1): 451, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789940

ABSTRACT

Root-knot nematodes (RKNs) infect host plants and obtain nutrients such as sugars for their own development. Therefore, inhibiting the nutrient supply to RKNs may be an effective method for alleviating root-knot nematode disease. At present, the pathway by which sucrose is unloaded from the phloem cells to giant cells (GCs) in root galls and which genes related to sugar metabolism and transport play key roles in this process are unclear. In this study, we found that sugars could be unloaded into GCs only from neighboring phloem cells through the apoplastic pathway. With the development of galls, the contents of sucrose, fructose and glucose in the galls and adjacent tissue increased gradually. SUT1, SUT2, SWEET7a, STP10, SUS3 and SPS1 may provide sugar sources for GCs, while STP1, STP2 and STP12 may transport more sugar to phloem parenchyma cells. At the early stage of Meloidogyne incognita infestation, the sucrose content in tomato roots and leaves increased, while the glucose and fructose contents decreased. SWEET7a, SPS1, INV-INH1, INV-INH2, SUS1 and SUS3 likely play key roles in root sugar delivery. These results elucidated the pathway of sugar unloading in tomato galls and provided an important theoretical reference for eliminating the sugar source of RKNs and preventing root-knot nematode disease.


Subject(s)
Plant Roots , Plant Tumors , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/physiology , Animals , Solanum lycopersicum/parasitology , Solanum lycopersicum/metabolism , Plant Roots/parasitology , Plant Roots/metabolism , Plant Tumors/parasitology , Plant Diseases/parasitology , Sucrose/metabolism , Sugars/metabolism , Carbohydrate Metabolism
6.
J Virol ; 97(1): e0138122, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36625579

ABSTRACT

Although segmented negative-sense RNA viruses (SNSRVs) have been frequently discovered in various fungi, most SNSRVs reported only the large segments. In this study, we investigated the diversity of the mycoviruses in the phytopathogenic fungus Fusarium asiaticum using the metatranscriptomic technique. We identified 17 fungal single-stranded RNA (ssRNA) viruses including nine viruses within Mitoviridae, one each in Narnaviridae, Botourmiaviridae, Hypoviridae, Fusariviridae, and Narliviridae, two in Mymonaviridae, and one trisegmented virus temporarily named Fusarium asiaticum mycobunyavirus 1 (FaMBV1). The FaMBV1 genome comprises three RNA segments, large (L), medium (M), and small (S) with 6,468, 2,639, and 1,420 nucleotides, respectively. These L, M, and S segments putatively encode the L protein, glycoprotein, and nucleocapsid, respectively. Phylogenetic analysis based on the L protein showed that FaMBV1 is phylogenetically clustered with Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2) and Sclerotinia sclerotiorum negative-stranded RNA virus 5 (SsNSRV5) but distantly related to the members of the family Phenuiviridae. FaMBV1 could be vertically transmitted by asexual spores with lower efficiency (16.7%, 2/42). Comparison between FaMBV1-free and -infected fungal strains revealed that FaMBV1 has little effect on hyphal growth, pathogenicity, and conidium production, and its M segment is dispensable for viral replication and lost during subculture and asexual conidiation. The M and S segments of AtNSRV2 and SsNSRV5 were found using bioinformatics methods, indicating that the two fungal NSRVs harbor trisegmented genomes. Our results provide a new example of the existence and evolution of the segmented negative-sense RNA viruses in fungi. IMPORTANCE Fungal segmented negative-sense RNA viruses (SNSRVs) have been frequently found. Only the large segment encoding RNA-dependent RNA polymerase (RdRp) has been reported in most fungal SNSRVs, except for a few fungal SNSRVs reported to encode nucleocapsids, nonstructural proteins, or movement proteins. Virome analysis of the Fusarium spp. that cause Fusarium head blight discovered a novel virus, Fusarium asiaticum mycobunyavirus 1 (FaMBV1), representing a novel lineage of the family Phenuiviridae. FaMBV1 harbors a trisegmented genome that putatively encodes RdRp, glycoproteins, and nucleocapsids. The putative glycoprotein was first described in fungal SNSRVs and shared homology with glycoprotein of animal phenuivirus but was dispensable for its replication in F. asiaticum. Two other trisegmented fungal SNSRVs that also encode glycoproteins were discovered, implying that three-segment bunyavirus infections may be common in fungi. These findings provide new insights into the ecology and evolution of SNSRVs, particularly those infecting fungi.


Subject(s)
Fungal Viruses , Fusarium , RNA Viruses , Fungal Viruses/genetics , Genome, Viral , Glycoproteins/genetics , Open Reading Frames , Phylogeny , RNA Viruses/genetics , RNA, Viral/genetics , Fusarium/virology
7.
Opt Express ; 32(9): 16523-16532, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859277

ABSTRACT

The direction variation of the fundamental wave in the same nonlinear photonic crystal would cause different pattern of harmonics generation. In a 2D/3D crystal with dense reciprocal lattice vectors, there will be large numbers of conical harmonic beams evolving with direction change of the fundamental wave. By rearranging the Ewald sphere and superposing it into the Ewald shell, we have a hybrid Ewald construction. It becomes a simple but useful geometric method to comprehensively depict the distribution of these quasi-phase-matching second harmonics and their conical form evolution. It presents conical second harmonic beams by their related reciprocal lattice vectors and simplifies the beams' distribution according to spatial arrangement of those reciprocal lattice vectors. It finds that the conical beams will create, annihilate, or get enhanced in specific order when fundamental waves change incident directions. We applied the method on a periodically poled 2D LiTaO3 crystal and all observed phenomena, meet the method's predictions. In our experiment, we observed that the conical beams distorted along the optic axis of the sample due to anisotropy, which was generally overlooked by earlier researches. The eccentricities of their ring projections suggest a potential auxiliary approach for crystal dispersion measurement.

8.
J Gen Intern Med ; 39(8): 1360-1368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38172410

ABSTRACT

BACKGROUND: Whether variation in Medicaid reimbursement fees influenced the impacts of the Medicaid expansions is not well understood. OBJECTIVE: We examine whether changes in health care access associated with Medicaid expansion are different in states with comparatively high Medicaid reimbursement rates compared against expanding in states with lower Medicaid reimbursement rates. DESIGN: Using a difference-in-difference-in-difference (DDD or triple-difference) regression approach, we compare relative differences in Medicaid expansion effects between lower and higher reimbursement states. PARTICIPANTS: 512,744 low-income adults aged 20-64 in the 2011-2019 Behavioral Risk Factor Surveillance System. MAIN MEASURES: Health insurance coverage status, unmet medical needs due to cost, regular source for health care, and a regular/scheduled checkup within the past year. KEY RESULTS: Medicaid expansion has significant and positive impacts on health coverage and access in both high- and low-fee states. In states with fee levels above the median Medicare-to-Medicaid ratios, expanding Medicaid eligibility reduced uninsurance rate by 15.2 percentage point (ppt, p < 0.01), shrank the cost-associated unmet medical need by 10.3 ppt (p < 0.01), improved access to usual source of care by 1.9 ppt (p < 0.1), and increased regular checkup by 14.4 ppt (p < 0.01), while such effects in low-fee states were 11.7 ppt (p < 0.01), 8.3 ppt (p < 0.01), 3.1 ppt (p < 0.1), and 12.3 ppt (p < 0.01), respectively. Our results suggest that Medicaid expansion effect on unmet medical need due to cost in higher-reimbursing states was 2.98 ppt (p < 0.05) larger than in lower-reimbursing states. Evidence suggests modest increases in health care access were more strongly associated with expansions in higher-fee states. CONCLUSIONS: Medicaid's fee structure should be considered as a factor influencing large-scale coverage expansions.


Subject(s)
Health Services Accessibility , Medicaid , Poverty , Humans , Medicaid/economics , Medicaid/statistics & numerical data , United States , Health Services Accessibility/economics , Health Services Accessibility/statistics & numerical data , Adult , Middle Aged , Poverty/economics , Female , Male , Young Adult , Insurance Coverage/economics , Insurance Coverage/statistics & numerical data , Patient Protection and Affordable Care Act/economics , Insurance, Health, Reimbursement/economics , Behavioral Risk Factor Surveillance System
9.
BMC Anesthesiol ; 24(1): 61, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336612

ABSTRACT

BACKGROUND: The pupillary response to tetanic electrical stimulation reflects the balance between nociceptive stimulation and analgesia. Although pupillary pain index (PPI) was utilized to predict postoperative pain, it depended on tetanic stimulation and was complex. We aim to describe the potential relationship between PD in the presence of surgical stimulation and pain levels after awakening. METHODS: According to the Verbal Rating Scale (VRS) score after extubation, the patients were divided into painless group (VRS = 0) and pain group (VRS ≥ 1). Pupillary diameter (PD) and pupillary light reflex velocity (PLRV) were compared between two groups when patients entered the operating room (T1), before incision (T2), 10 s after incision (T3), 30 s after incision (T4), 1 h after incision (T5), at the end of surgery (T6), shortly after extubation (T7), and when patients expressed pain clearly (T8). The magnitude of PD change (ΔPD) compared to the baseline value after anesthesia induction (T2) was calculated. The correlations between pupillary parameters and pain after awakening were calculated. RESULTS: Patients with VRS ≥ 1 had greater PD than painless patients at T3-7 (P = 0.04, 0.04, 0.003, <0.001, <0.001), and it was positively correlated with VRS score after awakening at T4-7 (r = 0.188, 0.217, 0.684, 0.721). The ability of T6ΔPD to predict VRS ≥ 1 was strong [threshold: 20.53%, area under the curve (AUC): 0.93, 95% confidence interval (CI): 0.89-0.97 ]. CONCLUSION: Our study indicates that PD is a useful index to direct the individualized analgesics used during operation, to better avoid the occurrence of pain during the postoperative emergence period. TRIAL REGISTRATION: This study was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR2000040908, registration date: 15/12/2020).


Subject(s)
Orthopedic Procedures , Reflex, Pupillary , Humans , Reflex, Pupillary/physiology , Pain Measurement , Anesthesia, General , Pain Perception , Pain, Postoperative/diagnosis , Orthopedic Procedures/adverse effects
10.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34021082

ABSTRACT

Tumors are often infiltrated by T lymphocytes recognizing either self- or mutated antigens but are generally inactive, although they often show signs of prior clonal expansion. Hypothesizing that this may be due to peripheral tolerance, we formulated nanoparticles containing innate immune stimulants that we found were sufficient to activate self-specific CD8+ T cells and injected them into two different mouse tumor models, B16F10 and MC38. These nanoparticles robustly activated and/or expanded antigen-specific CD8+ tumor-infiltrating T cells, along with a decrease in regulatory CD4+ T cells and an increase in Interleukin-17 producers, resulting in significant tumor growth retardation or elimination and the establishment of immune memory in surviving mice. Furthermore, nanoparticles with modification of stimulating human T cells enabled the robust activation of endogenous T cells in patient-derived tumor organoids. These results indicate that breaking peripheral tolerance without regard to the antigen specificity creates a promising pathway for cancer immunotherapy.


Subject(s)
Antigens/immunology , Immunity, Innate/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma, Experimental/therapy , Animals , Antigens/genetics , CD4-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Humans , Melanoma, Experimental/immunology , Mice , Nanoparticles/therapeutic use
11.
Plant Dis ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568791

ABSTRACT

Chrysanthemum (Chrysanthemum morifolium cv. Fubaiju) is used as medicinal herb (Chen et al. 2020). In October 2021, a leaf spot disease was observed on leaves of C. morifolium in Huanggang, Hubei province. Disease incidence was approximately 40%. Leaf lesions manifested as necrotic spots, coalesced, and expanded to form brown-black spots, leading to wilting of the leaves. On stems, the lesions manifested as dark brown necrotic spots. To identify the pathogen, 29 pieces (5 × 5 mm) from lesion margins were surface sterilized in 1% NaOCl and rinsed three times with sterile water. The pieces were transferred onto potato dextrose agar (PDA) for incubation at 25℃ for 3 d in the dark. Fifteen fungal colonies were successfully isolated. The colony morphology with flat wavy edge, sparse aerial mycelia, and surface olivaceous black were observed at 7 days post incubation. Subglobular pycnidia were brown with a short beak, and pycnidia diameters were thick (212 to 265 × 189 to 363 µm, n = 20). Ovoid conidia were aseptate and hyaline, conidia diameters were thick (4.0 to 9.8 × 1.8 to 4.7 µm, n = 100). The morphological characters of these isolates were consistent with those of Stagonosporopsis chrysanthemi (Zhao et al. 2021). Pure culture of representative HGNU2021-18 isolated from the diseased leaves subjected to molecular identification. Sequences of the rDNA internal transcribed spacer (ITS) region, 28S large subunit ribosomal RNA (LSU), ß-tubulin (TUB2), actin (ACT), and partial RNA polymerase II largest subunit (RPB2) genes were amplified from genomic DNA of isolate HGNU2021-18 using the following primer pairs: ITS1/ITS4 (White et al. 1990), LR0R/LR5 (Rehner et al. 1994), Btub2Fd/Btub4Rd (Woudenberg et al. 2009), ACT512F/ACT783R (Carbone et al.1999), and RPB2-5F2 (Sung et al. 2007)/fRPB2-7cR (Liu et al. 1999), respectively. The PCR products were purified and then sequenced by Sangon Biotech (China). Nucleotide sequences of ITS (544 bp, OM346748), LSU (905 bp, OM758418), TUB2 (563 bp, OM945724), ACT (294 bp, OM793715), and RPB2 (957 bp, OM793716) amplified from the isolate HGNU2021-18 were subjected to BLASTn analysis. The results showed that ITS, LSU, TUB2, ACT, and RPB2 shared 100.00%, 99.45%, 99.20%, 100.00%, and 100.00% sequence identity to the five published sequences (MW810272.1, MH869953.1, MW815129.1, JN251973.1, and MT018012.1, respectively) of the S. chrysanthemi isolate CBS 500.63. Phylogenetic analysis of the multilocus sequences of ITS, LSU, RPB2, ACT, and TUB2 belonging to different Stagonosporopsis species was performed in MEGA 7.0 (Chen et al. 2015). Isolate HGNU2021-18 was placed in a clade with S. chrysanthemi with 99% bootstrap support. Thus, the results of morphological and molecular analyses indicated that the disease symptoms on chrysanthemum plants were caused by S. chrysanthemi. Under conditions of 25°C and 85% relative humidity, pathogenicity test was performed on 2-month-old healthy plants using isolate HGNU2021-18. The leaves were inoculated with 5 mm diameter mycelial plugs or with sterile agar plugs (control). Six plants were used in each treatment. Disease symptoms were observed on treated plants at 2 weeks post inoculation which were those previously observed in the field, while the control plants remained symptomless. The pathogen was re-isolated from the diseased plants, and S. chrysanthemi was confirmed as the causal pathogen. This is the first report of S. chrysanthemi causing stem and foliage blight of chrysanthemum in China.

12.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3002-3011, 2024 Jun.
Article in Zh | MEDLINE | ID: mdl-39041160

ABSTRACT

This study aims to observe the effects of the traditional Chinese medicine prescription Dahuang Zhechong Pills(DHZCP on renal aging and explore its potential multi-target effects. Rats were assigned into the normal, model, DHZCP, and vitamin E(VE)groups. Firstly, the rat model of D-galactose(D-gal)-induced renal aging was established. During the modeling period, the rats in the 4 groups were administrated with double distilled water, double distilled water, DHZCP suspension, and VE suspension, respectively,by gavage every day. On day 60 of intervention, the indicators of renal aging and injury in rats were measured, including the function,histopathological characteristics, senescence-associated ß-galactosidase( SA-ß-gal) staining, and expression levels of Klotho and proteins associated with cell cycle arrest and senescence-associated secretory phenotype(SASP) in the renal tissue. Moreover, nontargeted metabolomic analysis of the renal tissue was performed for the 4 groups of rats to screen out the potential biomarkers and metabolic pathways. Finally, the signaling pathways of key targets were preliminarily validated. The results showed that DHZCP and VE significantly improved the renal function, histopathological features of renal tubular/interstitial tissue, and degree of SA-ß-gal staining, up-regulated the expression level of Klotho, and down-regulated the expression levels of proteins associated with cell cycle arrest and SASP in the renal tissue of the aging rats. In addition, DHZCP and VE regulated the metabolites in the renal tissue of the aging rats. There were 21 common differential metabolites. Among them, 5 differential metabolites were significantly increased in the aging rats and recovered after DHZCP or VE treatment, and they were involved in the lipid metabolism and energy metabolism pathways. The areas under the curves of the groups in comparison varied within the range of 0. 88-1. DHZCP regulated multiple signaling pathways, such as the adenosine monophosphate-activated protein kinase(AMPK), cyclic guanosine monophosphate-protein kinase G( c GMP-PKG), cyclic adenylic acid( c AMP), phosphatidylinositol-3-kinase-protein kinase B( PI3K-Akt), mammalian target of rapamycin(mTOR), and autophagy signaling pathways. In addition, it affected the multiple metabolic pathways, such as renin secretion, longevity regulation pathway, diabetic cardiomyopathy, and niacin and nicotinamide metabolism. DHZCP and VE significantly up-regulated the expression level of the key proteins in the AMPK signaling pathway in the renal tissue of the aging rats. In all, DHZCP and VE could mitigate renal aging and injury. DHZCP exerted multi-target effects via multiple signaling pathways and metabolic pathways in the kidney, in which the AMPK signaling pathway may be one of the key targets for action.


Subject(s)
Aging , Drugs, Chinese Herbal , Kidney , Metabolomics , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Rats , Kidney/drug effects , Kidney/metabolism , Aging/drug effects , Aging/metabolism , Male , Signal Transduction/drug effects
13.
New Phytol ; 238(4): 1651-1670, 2023 05.
Article in English | MEDLINE | ID: mdl-36829301

ABSTRACT

Jasmonic acid (JA) is involved in the modulation of defence and growth activities in plants. The best-characterized growth-defence trade-offs stem from antagonistic crosstalk among hormones. In this study, we first confirmed that JA negatively regulates root-knot nematode (RKN) susceptibility via the root exudates (REs) of tomato plants. Omics and toxicological analyses implied that kaempferol, a type of flavonol, from REs has a negative effect on RKN infection. We demonstrated that SlMYB57 negatively regulated kaempferol contents in tomato roots, whereas SlMYB108/112 had the opposite effect. We revealed that JA fine-tuned the homeostasis of kaempferol via SlMYB-mediated transcriptional regulation and the interaction between SlJAZs and SlMYBs, thus ensuring a balance between lateral root (LR) development and RKN susceptibility. Overall, this work provides novel insights into JA-modulated LR development and RKN susceptibility mechanisms and elucidates a trade-off model mediated by JA in plants encountering stress.


Subject(s)
Solanum lycopersicum , Tylenchoidea , Animals , Plant Diseases , Tylenchoidea/physiology , Kaempferols/pharmacology , Plant Roots
14.
Plant Physiol ; 190(1): 828-842, 2022 08 29.
Article in English | MEDLINE | ID: mdl-35689622

ABSTRACT

Botrytis cinerea is one of the most widely distributed and harmful pathogens worldwide. Both the phytohormone jasmonate (JA) and the VQ motif-containing proteins play crucial roles in plant resistance to B. cinerea. However, their crosstalk in resistance to B. cinerea is unclear, especially in tomato (Solanum lycopersicum). In this study, we found that the tomato VQ15 was highly induced upon B. cinerea infection and localized in the nucleus. Silencing SlVQ15 using virus-induced gene silencing reduced resistance to B. cinerea. Overexpression of SlVQ15 enhanced resistance to B. cinerea, while disruption of SlVQ15 using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9) technology increased susceptibility to B. cinerea. Furthermore, SlVQ15 formed homodimers. Additionally, SlVQ15 interacted with JA-ZIM domain proteins, repressors of the JA signaling pathway, and SlWRKY31. SlJAZ11 interfered with the interaction between SlVQ15 and SlWRKY31 and repressed the SlVQ15-increased transcriptional activation activity of SlWRKY31. SlVQ15 and SlWRKY31 synergistically regulated tomato resistance to B. cinerea, as silencing SlVQ15 enhanced the sensitivity of slwrky31 to B. cinerea. Taken together, our findings showed that the SlJAZ-interacting protein SlVQ15 physically interacts with SlWRKY31 to cooperatively control JA-mediated plant defense against B. cinerea.


Subject(s)
Solanum lycopersicum , Botrytis/physiology , Cyclopentanes/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Oxylipins/metabolism , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Med Care ; 61(12): 872-881, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37801548

ABSTRACT

BACKGROUND: Unemployment associated with the coronavirus disease 2019 (COVID-19) pandemic was linked to financial insecurity and disruptions in access to health care. OBJECTIVE: To explore whether expanded access to Medicaid mitigated the likelihood of health and non-health financial hardship associated with pandemic-linked job loss. DESIGN: We estimate linear regression models comparing differences in the levels of outcomes attributable to pandemic-linked joblessness in Medicaid expansion and nonexpansion states. OBSERVATIONS: A total of 20,281 adults aged 19-64 were in the 2021 National Financial Capability Study. MEASURES: Our key exposure was job loss, layoffs, and furloughs, attributable to the COVID-19 pandemic. Outcomes under evaluation include indicators of health care access and household financial health. RESULTS: Relative to persons reporting pandemic-linked unemployment in nonexpansion states, adults experiencing pandemic-linked job loss in expansion states were less likely to report as uninsured [-6.2 percentage points (PPs); 95% CI: -10.8, -1.6; P < 0.01], having unpaid medical bills (-4.3 PP; 95% CI: -8, -0.6; P < 0.05), having unmet medical needs due to cost (-5.3 PP; 95% CI: -10.1, -0.5; P < 0.05), and having calls from debt collection agencies (-6.9 PP; 95% CI: -10.6, -3.1; P < 0.01). Patterns consistent with Medicaid acting as a safety net for the adverse financial effects of job loss were more pronounced for middle-income households. CONCLUSIONS: In economic downturns, such as the COVID-19 crisis, Medicaid can help insulate households from diminished health care access and financial distress associated with job loss.


Subject(s)
COVID-19 , Medicaid , Adult , United States/epidemiology , Humans , Pandemics , Patient Protection and Affordable Care Act , COVID-19/epidemiology , Health Services Accessibility
16.
J Exp Bot ; 74(4): 1186-1197, 2023 02 13.
Article in English | MEDLINE | ID: mdl-35670512

ABSTRACT

Flower development and fertility are coordinately regulated by endogenous developmental signals, including the phytohormones jasmonates (JAs), auxin, and gibberellin, and environmental cues. JAs regulate stamen development and fertility under basal conditions, affect root growth and trichome formation under stress conditions, and control defense responses against insect herbivores and pathogens. Since the 1990s, an increasing number of studies have revealed the essential roles of JA biosynthesis, signaling, and crosstalk in regulation of flower development and fertility. Here, we summarize and present an updated overview of the JA pathway and its crosstalk in modulating flower/sexual organ development and fertility in Arabidopsis, tomato, rice, maize, and sorghum.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Growth Regulators/metabolism , Gibberellins/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Fertility , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Flowers , Gene Expression Regulation, Plant
17.
Environ Sci Technol ; 57(47): 18834-18845, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37183372

ABSTRACT

Dichloroacetonitrile (DCAN) as one of the potentially prioritized regulated DBPs has drawn great attention; however, understanding its formation, especially the C-C bond cleavage mechanisms, is limited. In this study, DCAN formation mechanisms from long-chain primary amines, amino acids, and dipeptides during chlorination were investigated by a combined computational and experimental approach. The results indicate that nitriles initially generate for all of the above precursors, then they undergo ß-C-hydroxylation or/and α-C-chlorination processes, and finally, DCAN is produced through the Cα-Cß bond cleavage. For the first time, the underlying mechanism of the C-C bond cleavage was unraveled to be electron transfer from the O- anion into its attached C atom in the chlorinated nitriles, leading to the strongly polarized Cα-Cß bond heterocleavage and DCAN- formation. Moreover, DCAN molar yields of precursors studied in the present work were found to be determined by their groups at the γ-site of the amino group, where the carbonyl group including -CO2-, -COR, and -CONHR, the aromatic group, and the -OH group can all dramatically facilitate DCAN formation by skipping over or promoting the time-consuming ß-C-hydroxylation process and featuring relatively lower activation free energies in the C-C bond cleavage. Importantly, 4-amino-2-hydroxybutyric acid was revealed to possess the highest DCAN yield among all the known aliphatic long-chain precursors to date during chlorination. Additionally, enonitriles, (chloro-)isocyanates, and nitriles can be generated during DCAN formation and should be of concern due to their high toxicities.


Subject(s)
Water Pollutants, Chemical , Water Purification , Amino Acids , Amines , Halogenation , Dipeptides , Disinfection , Water Purification/methods , Acetonitriles/chemistry , Water Pollutants, Chemical/chemistry
18.
J Immunol ; 207(8): 2077-2085, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34551964

ABSTRACT

CMV infection is a significant complication after solid organ transplantation. We used single cell TCR αß sequencing to determine how memory inflation impacts clonality and diversity of the CMV-responsive CD8 and CD4 T cell repertoire in the first year after transplantation in human subjects. We observed CD8 T cell inflation but no changes in clonal diversity, indicating homeostatic stability in clones. In contrast, the CD4 repertoire was diverse and stable over time, with no evidence of CMV-responsive CD4 T cell expansion. We identified shared CDR3 TCR motifs among patients but no public CMV-specific TCRs. Temporal changes in clonality in response to transplantation and in the absence of detectable viral reactivation suggest changes in the repertoire immediately after transplantation followed by an expansion with stable clonal competition that may mediate protection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/physiology , Graft Rejection/immunology , Heart Transplantation , Kidney Transplantation , Adult , Aged , Antigens, Viral/immunology , Cell Proliferation , Clone Cells , Female , Genetic Variation , Humans , Immunologic Memory , Male , Middle Aged , Receptors, Antigen, T-Cell, alpha-beta/genetics , Transplantation, Homologous , Virus Activation/immunology
19.
Phys Chem Chem Phys ; 25(14): 10155-10165, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36975125

ABSTRACT

As one of the significant pollutants in indoor air, formaldehyde (HCHO) has attracted increasing attention due to its negative effects on human health. Thus, to reduce formaldehyde pollution, herein, an Ag-promoted Cr/MnO2 catalyst (Ag/Cr/MnO2) was obtained via a hydrothermal-calcination method, which was employed for the catalytic oxidation of low-concentration indoor HCHO (∼1 ppm) at room temperature. The Ag/Cr/MnO2 catalyst eliminated approximately 98.62% HCHO within 14 h and maintained a high removal efficiency continuously under the dynamic test conditions. Furthermore, the catalyst exhibited good recycling stability and outstanding activity in a humid environment. Different characterization techniques were utilized to determine the physicochemical properties that contribute to improving the catalytic performance. The Ag substance contained metallic Ag (Ag0) as the main component and some Ag2O, and the Ag0 particles provided ample active sites for the catalytic oxidation of HCHO. Besides, the incorporation of Ag increased the reducibility of the catalyst and the content of Mn4+, Cr6+ and oxygen vacancies. The abundant active sites, high reducibility, rich Mn4+, Cr6+, oxygen vacancies, and surface lattice oxygen species, and the powerful interaction between Cr/MnO2 and Ag were the reasons for the splendid catalytic capability for HCHO by the Ag/Cr/MnO2 catalyst. In conclusion, the Ag/Cr/MnO2 catalyst can be a promising catalyst to degrade HCHO with practical application significance.

20.
Phys Chem Chem Phys ; 25(36): 24495-24507, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37655797

ABSTRACT

Formaldehyde (HCHO) is one of the major air pollutants, and its effective removal at room temperature has proven to be a great challenge. In this study, an Ag/Mn/CeO2 catalyst for the catalytic oxidation of low-concentration HCHO at room temperature was prepared by a hydrothermal-calcination method. The removal performance of the Ag/Mn/CeO2 catalyst for HCHO was systematically studied, and its surface chemical properties and microstructure were analyzed. The incorporation of Ag did not change the mesoporous structure of the Mn/CeO2 catalyst but reduced the pore size and specific surface area. The Ag species included metallic Ag as the main component and part of Ag+. The well-dispersed Ag species on the catalyst provided sufficient active sites for the catalytic oxidation of HCHO. The more the Ag active sites, the more the lattice defects and oxygen vacancies generated from the interaction of Ag with Mn/CeO2. Precisely because of this, the Ag/Mn/CeO2 catalyst exhibited high catalytic activity for HCHO at room temperature with a removal efficiency of 96.76% within 22 h, which is 22.91% higher than that of the Mn/CeO2 catalyst. Moreover, the Ag/Mn/CeO2 catalyst showed good cycling stability and the removal efficiency reached 85.77% after five cycles. Therefore, the as-prepared catalyst is an effective and sustainable material that can be used to remove HCHO from actual indoor polluted air. This paper provides ideas for the research and development of efficient catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL