Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circ Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864216

ABSTRACT

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1. lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.

2.
Hepatology ; 79(4): 752-767, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37725754

ABSTRACT

BACKGROUND AND AIMS: Cell death and inflammation play critical roles in chronic tissue damage caused by cholestatic liver injury leading to fibrosis and cirrhosis. Liver cirrhosis is often associated with kidney damage, which is a severe complication with poor prognosis. Interferon regulatory factor 3 (IRF3) is known to regulate apoptosis and inflammation, but its role in cholestasis remains obscure. In this study. APPROACH AND RESULTS: We discovered increased IRF3 phosphorylation in the liver of patients with primary biliary cholangitis and primary sclerosing cholangitis. In the bile duct ligation model of obstructive cholestasis in mice, we found that tissue damage was associated with increased phosphorylated IRF3 (p-IRF3) in the liver and kidney. IRF3 knockout ( Irf3-/- ) mice showed significantly attenuated liver and kidney damage and fibrosis compared to wide-type mice after bile duct ligation. Cell-death pathways, including apoptosis, necroptosis, and pyroptosis, inflammasome activation, and inflammatory responses were significantly attenuated in Irf3-/- mice. Mechanistically, we show that bile acids induced p-IRF3 in vitro in hepatocytes. In vivo , activated IRF3 positively correlated with increased expression of its target gene, Z-DNA-Binding Protein-1 (ZBP1), in the liver and kidney. Importantly, we also found increased ZBP1 in the liver of patients with primary biliary cholangitis and primary sclerosing cholangitis. We discovered that ZBP1 interacted with receptor interacting protein 1 (RIP1), RIP3, and NLRP3, thereby revealing its potential role in the regulation of cell-death and inflammation pathways. In conclusion. CONCLUSIONS: Our data indicate that bile acid-induced p-IRF3 and the IRF3-ZBP1 axis play a central role in the pathogenesis of cholestatic liver and kidney injury.


Subject(s)
Cholangitis, Sclerosing , Cholestasis , Liver Cirrhosis, Biliary , Animals , Humans , Mice , Apoptosis , Bile Acids and Salts/metabolism , Bile Ducts/pathology , Cholangitis, Sclerosing/pathology , Cholestasis/metabolism , Inflammation/metabolism , Interferon Regulatory Factor-3/metabolism , Kidney/pathology , Liver/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis, Biliary/complications , Phosphorylation
3.
J Mol Cell Cardiol ; 186: 94-106, 2024 01.
Article in English | MEDLINE | ID: mdl-38000204

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) is closely related to the final infarct size in acute myocardial infarction (AMI). Therefore, reducing MIRI can effectively improve the prognosis of AMI patients. At the same time, the healing process after AMI is closely related to the local inflammatory microenvironment. Regulatory T cells (Tregs) can regulate various physiological and pathological immune inflammatory responses and play an important role in regulating the immune inflammatory response after AMI. However, different subtypes of Tregs have different effects on MIRI, and the same subtype of Tregs may also have different effects at different stages of MIRI. This article systematically reviews the classification and function of Tregs, as well as the role of various subtypes of Tregs in MIRI. A comprehensive understanding of the role of each subtype of Tregs can help design effective methods to control immune reactions, reduce MIRI, and provide new potential therapeutic options for AMI.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/pathology , T-Lymphocytes, Regulatory , Myocardial Infarction/therapy
4.
J Neurosci ; 42(13): 2662-2677, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35165175

ABSTRACT

Palmitoylation may be relevant to the processes of learning and memory, and even disorders, such as post-traumatic stress disorder and aging-related cognitive decline. However, underlying mechanisms of palmitoylation in these processes remain unclear. Herein, we used acyl-biotin exchange, coimmunoprecipitation and biotinylation assays, and behavioral and electrophysiological methods, to explore whether palmitoylation is required for hippocampal synaptic transmission and fear memory formation, and involved in functional modification of synaptic proteins, such as postsynapse density-95 (PSD-95) and glutamate receptors, and detected if depalmitoylation by specific enzymes has influence on glutamatergic synaptic plasticity. Our results showed that global palmitoylation level, palmitoylation of PSD-95 and glutamate receptors, postsynapse density localization of PSD-95, surface expression of AMPARs, and synaptic strength of cultured hippocampal neurons were all enhanced by TTX pretreatment, and these can be reversed by inhibition of palmitoylation with palmitoyl acyl transferases inhibitors, 2-bromopalmitate and N-(tert-butyl) hydroxylamine hydrochloride. Importantly, we also found that acyl-protein thioesterase 1 (APT1)-mediated depalmitoylation is involved in palmitoylation of PSD-95 and glutamatergic synaptic transmission. Knockdown of APT1, not protein palmitoyl thioesterase 1, with shRNA, or selective inhibition, significantly increased AMPAR-mediated synaptic strength, palmitoylation levels, and synaptic or surface expression of PSD-95 and AMPARs. Results from hippocampal tissues and fear-conditioned rats showed that palmitoylation is required for synaptic strengthening and fear memory formation. These results suggest that palmitoylation and APT1-mediated depalmitoylation have critical effects on the regulation of glutamatergic synaptic plasticity, and it may serve as a potential target for learning and memory-associated disorders.SIGNIFICANCE STATEMENT Fear-related anxiety disorders, including post-traumatic stress disorder, are prevalent psychiatric conditions, and fear memory is associated with hyperexcitability in the hippocampal CA1 region. Palmitoylation is involved in learning and memory, but mechanisms coupling palmitoylation with fear memory acquisition remain poorly understood. This study demonstrated that palmitoylation is essential for postsynapse density-95 clustering and hippocampal glutamatergic synaptic transmission, and APT1-mediated depalmitoylation plays critical roles in the regulation of synaptic plasticity. Our study revealed that molecular mechanism about downregulation of APT1 leads to enhancement of AMPAR-mediated synaptic transmission, and that palmitoylation cycling is implicated in fear conditioning-induced synaptic strengthening and fear memory formation.


Subject(s)
Hippocampus , Synapses , Animals , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Rats , Synapses/metabolism , Synaptic Transmission/physiology
5.
J Biol Chem ; 298(7): 102010, 2022 07.
Article in English | MEDLINE | ID: mdl-35525270

ABSTRACT

Follistatin (FS)-like 1 (FSTL1) is a member of the FS-SPARC (secreted protein, acidic and rich in cysteine) family of secreted and extracellular matrix proteins. The functions of FSTL1 have been studied in heart and lung injury as well as in wound healing; however, the role of FSTL1 in the kidney is largely unknown. Here, we show using single-cell RNA-Seq that Fstl1 was enriched in stromal cells in obstructed mouse kidneys. In addition, immunofluorescence demonstrated that FSTL1 expression was induced in fibroblasts during kidney fibrogenesis in mice and human patients. We demonstrate that FSTL1 overexpression increased renal fibrosis and activated the Wnt/ß-catenin signaling pathway, known to promote kidney fibrosis, but not the transforming growth factor ß (TGF-ß), Notch, Hedgehog, or Yes-associated protein (YAP) signaling pathways in obstructed mouse kidneys, whereas inhibition of FSTL1 lowered Wnt/ß-catenin signaling. Importantly, we show that FSTL1 interacted with Wnt ligands and the Frizzled (FZD) receptors but not the coreceptor lipoprotein receptor-related protein 6 (LRP6). Specifically, we found FSTL1 interacted with Wnt3a through its extracellular calcium-binding (EC) domain and von Willebrand factor type C-like (VWC) domain, and with FZD4 through its EC domain. Furthermore, we show that FSTL1 increased the association of Wnt3a with FZD4 and promoted Wnt/ß-catenin signaling and fibrogenesis. The EC domain interacting with both Wnt3a and FZD4 also enhanced Wnt3a signaling. Therefore, we conclude that FSTL1 is a novel extracellular enhancer of the Wnt/ß-catenin pathway.


Subject(s)
Follistatin-Related Proteins , Frizzled Receptors , Kidney , Wnt Signaling Pathway , Animals , Follistatin-Related Proteins/genetics , Follistatin-Related Proteins/metabolism , Frizzled Receptors/metabolism , Humans , Kidney/metabolism , Kidney/physiopathology , Ligands , Mice , Wnt3A Protein
6.
Kidney Int ; 104(6): 1150-1163, 2023 12.
Article in English | MEDLINE | ID: mdl-37783445

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) levels decline in experimental models of acute kidney injury (AKI). Attenuated enzymatic conversion of tryptophan to NAD+ in tubular epithelium may contribute to adverse cellular and physiological outcomes. Mechanisms underlying defense of tryptophan-dependent NAD+ production are incompletely understood. Here we show that regulation of a bottleneck enzyme in this pathway, quinolinate phosphoribosyltransferase (QPRT) may contribute to kidney resilience. Expression of QPRT declined in two unrelated models of AKI. Haploinsufficient mice developed worse outcomes compared to littermate controls whereas novel, conditional gain-of-function mice were protected from injury. Applying these findings, we then identified hepatocyte nuclear factor 4 alpha (HNF4α) as a candidate transcription factor regulating QPRT expression downstream of the mitochondrial biogenesis regulator and NAD+ biosynthesis inducer PPARgamma coactivator-1-alpha (PGC1α). This was verified by chromatin immunoprecipitation. A PGC1α - HNF4α -QPRT axis controlled NAD+ levels across cellular compartments and modulated cellular ATP. These results propose that tryptophan-dependent NAD+ biosynthesis via QPRT and induced by HNF4α may be a critical determinant of kidney resilience to noxious stressors.


Subject(s)
Acute Kidney Injury , Quinolinic Acid , Animals , Mice , Acute Kidney Injury/genetics , Hepatocyte Nuclear Factors , Kidney , NAD , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Tryptophan
7.
Kidney Int ; 103(3): 501-513, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36328098

ABSTRACT

Final urine volume and concentration are defined by water reabsorption through the water channel proteins aquaporin (AQP)-2, -3 and -4 in the collecting duct. However, the transcriptional regulation of these AQPs is not well understood. The Hippo/Yes-associated protein 1 (YAP) pathway plays an important role in organ size control and tissue homeostasis. When the Hippo pathway including the Mst1/Mst2 kinases is inhibited, YAP is activated and functions as a transcription co-activator. Our previous work revealed a pathological role of tubular YAP activation in chronic kidney disease, but the physiological role of YAP in the kidney remains to be established. Here, we found that tubule-specific Yap knockout mice showed increased urine output and decreased urinary osmolality. Decreases in Aqp2, -3 and -4 mRNA and protein abundance in the kidney were evident in Yap knockout mice. Analysis of Mst1/Mst2 double knockout and Mst1/Mst2/Yap triple knockout mice showed that expression of Aqp2 and Aqp4 but not Aqp3 was dependent on YAP. Furthermore, YAP was recruited to the promoters of the Aqp2 and Aqp4 genes and stimulated their transcription. Interestingly, YAP was found to interact with transcription factors GATA2, GATA3 and NFATc1. These three factors promoted Aqp2 transcription in a YAP dependent manner in collecting duct cells. These three factors also promoted Aqp4 transcription whereas only GATA2 and GATA3 enhanced Aqp3 transcription. Thus, our results suggest that YAP promotes Aqp2 and Aqp4 transcription, interacts with GATA2, GATA3 and NFATc1 to control Aqp2 expression, while Aqp-2, -3 and -4 exploit overlapping mechanisms for their baseline transcriptional regulation.


Subject(s)
Aquaporin 2 , Kidney Tubules, Collecting , Mice , Animals , Aquaporin 2/metabolism , YAP-Signaling Proteins , Kidney/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/metabolism , Mice, Knockout , Water/metabolism , Homeostasis , Kidney Tubules, Collecting/metabolism
8.
Opt Lett ; 48(20): 5213-5216, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37831830

ABSTRACT

In this Letter, we report the application of planar liquid crystal (LC) devices in axial focus shaping, proving that LC diffractive optical elements (DOEs) can achieve continuous adjustment of a symmetrical axial light field by changing the ellipticity of the incident light and can flexibly and quickly achieve various axial light field designs through an axial iterative Fourier transform algorithm. The LC DOE achieves a quasi-continuous phase and an extremely high transmittance (98.6% at 1030 nm), which makes the focusing efficiency of the LC DOE with two segments of uniform focal depths as high as 84%. The experimental results demonstrate the accurate optical field shaping effect and the axial intensity adjustable ability of LC DOE, indicating potential applications in optical tomography and precision manufacturing, among others.

9.
Nanotechnology ; 34(19)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36745908

ABSTRACT

Two-dimensional materials have potential applications for flexible thermoelectric materials because of their excellent mechanical and unique electronic transport properties. Here we present a functionalization method by a Lewis acid-base reaction to modulate atomic structure and electronic properties at surface of the MoS2nanosheets. By AlCl3solution doping, the lone pair electronics from S atoms would enter into the empty orbitals of Al3+ions, which made the Fermi level of the 1T phase MoS2move towards valence band, achieving a 1.8-fold enhancement of the thermoelectric power factor. Meanwhile, benefiting from the chemical welding effect of Al3+ions, the mechanical flexibility of the nanosheets restacking has been improved. We fabricate a wearable thermoelectric wristband based on this improved MoS2nanosheets and achieved 5 mV voltage output when contacting with human body. We think this method makes most of the transition metal chalcogenides have great potential to harvest human body heat for supplying wearable electronic devices due to their similar molecular structure.

10.
J Neurosci ; 41(24): 5287-5302, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33753547

ABSTRACT

Diabetic neuropathic pain (DNP) is a common complication of diabetes characterized by persistent pain. Emerging evidence links astrocytes to mechanical nociceptive processing, and the motor cortex (MCx) is a cerebral cortex region that is known to play a key role in pain regulation. However, the association between MCx astrocytes and DNP pathogenesis remains largely unexplored. Here, we studied this association using designer receptors exclusively activated by designer drugs to specifically manipulate MCx astrocytes. We proved that the selective inhibition of MCx astrocytes reduced DNP in streptozocin (STZ)-induced DNP models and discovered a potential mechanism by which astrocytes release cytokines, including TNF-α and IL-1ß, to increase neuronal activation in the MCx, thereby regulating pain. Together, these results demonstrate a pivotal role for MCx astrocytes in DNP pathogenesis and provide new insight into DNP treatment strategies.


Subject(s)
Astrocytes/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetic Neuropathies/physiopathology , Motor Cortex/physiopathology , Neuralgia/physiopathology , Animals , Male , Rats, Sprague-Dawley
11.
J Am Soc Nephrol ; 32(9): 2159-2174, 2021 09.
Article in English | MEDLINE | ID: mdl-34465607

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by numerous cysts originating from renal tubules and is associated with significant tubular epithelial cell proliferation. Focal adhesion kinase (FAK) promotes tumor growth by regulating multiple proliferative pathways. METHODS: We established the forskolin (FSK)-induced three-dimensional (3D) Madin-Darby Canine Kidney cystogenesis model and 8-bromoadenosine-3`,5`-cyclic monophosphate-stimulated cyst formation in ex vivo embryonic kidney culture. Cultured human renal cyst-lining cells (OX-161) and normal tubular epithelial cells were treated with FAK inhibitors or transfected with green fluorescent protein-tagged FAK mutant plasmids for proliferation study. Furthermore, we examined the role of FAK in two transgenic ADPKD animal models, the kidney-specific Pkd1 knockout and the collecting duct-specific Pkd1 knockout mouse models. RESULTS: FAK activity was significantly elevated in OX-161 cells and in two ADPKD mouse models. Inhibiting FAK activity reduced cell proliferation in OX-161 cells and prevented cyst growth in ex vivo and 3D cyst models. In tissue-specific Pkd1 knockout mouse models, FAK inhibitors retarded cyst development and mitigated renal function decline. Mechanically, FSK stimulated FAK activation in tubular epithelial cells, which was blocked by a protein kinase A (PKA) inhibitor. Inhibition of FAK activation by inhibitors or transfected cells with mutant FAK constructs interrupted FSK-mediated Src activation and upregulation of ERK and mTOR pathways. CONCLUSIONS: Our study demonstrates the critical involvement of FAK in renal cyst development, suggests that FAK is a potential therapeutic target in treating patients with ADPKD, and highlights the role of FAK in cAMP-PKA-regulated proliferation.


Subject(s)
Aminopyridines/pharmacology , Benzamides/pharmacology , Epithelial Cells/drug effects , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Hydroxamic Acids/pharmacology , Polycystic Kidney, Autosomal Dominant/prevention & control , Pyrazines/pharmacology , Sulfonamides/pharmacology , Animals , Cell Culture Techniques , Cell Proliferation , Disease Models, Animal , Dogs , Humans , Mice , Mice, Inbred C57BL , Polycystic Kidney, Autosomal Dominant/etiology , Polycystic Kidney, Autosomal Dominant/pathology , Signal Transduction
12.
Lasers Med Sci ; 37(6): 2727-2735, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35344109

ABSTRACT

Optical coherence tomography (OCT) is a noninvasive, radiation-free, and high-resolution imaging technology. The intraoperative classification of normal and cancerous tissue is critical for surgeons to guide surgical operations. Accurate classification of gastric cancerous OCT images is beneficial to improve the effect of surgical treatment based on the deep learning method. The OCT system was used to collect images of cancerous tissues removed from patients. An intelligent classification method of gastric cancerous tissues based on the residual network is proposed in this study and optimized with the ResNet18 model. Four residual blocks are used to reset the model structure of ResNet18 and reduce the number of network layers to identify cancerous tissues. The model performance of different residual networks is evaluated by accuracy, precision, recall, specificity, F1 value, ROC curve, and model parameters. The classification accuracies of the proposed method and ResNet18 both reach 99.90%. Also, the model parameters of the proposed method are 44% of ResNet18, which occupies fewer system resources and is more efficient. In this study, the proposed deep learning method was used to automatically recognize OCT images of gastric cancerous tissue. This artificial intelligence method could help promote the clinical application of gastric cancerous tissue classification in the future.


Subject(s)
Algorithms , Tomography, Optical Coherence , Artificial Intelligence , Humans , Neural Networks, Computer , ROC Curve , Tomography, Optical Coherence/methods
13.
Opt Lett ; 46(10): 2549-2552, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33988632

ABSTRACT

In this Letter, we experimentally demonstrate liquid crystal-based moiré lenses with a wide and tunable focal length by direct-writing photoalignment. Our moiré lenses, which consist of two cascaded diffractive optical elements, have a large range of refractive power between $\pm 0.85\;{{\rm m}^{- 1}}$ at 532 nm and a mutual rotation between $\pm 90^\circ$ with high diffraction efficiency ($\gt\!{75}\%$). Based on the as-designed moiré lenses, we propose high-dynamic-resolution optical edge detection without any axial shift or substitution of components. The minimum edge width is 13.2 µm and can be adjusted within 100 µm by mutual rotation of this device, which has great potential to be used in adaptive and compact optical systems.

14.
Bioorg Chem ; 116: 105395, 2021 11.
Article in English | MEDLINE | ID: mdl-34628224

ABSTRACT

Seven new triterpenoids including two cycloartanes (1-2), a lanostane (3), a tirucallane (4), a dammarane (5), an ursane (6), and an oleanane (7), along with nineteen known triterpenoids (8-26), have been obtained from the roots of Euphorbia fischeriana. Their structures were established by NMR, HRESIMS, single-crystal X-ray diffraction analysis, Mosher's method, NMR calculations, ECD analysis, and comparison with structurally related known analogues. Among them, compounds 1 and 8 were a pair of cycloartane-type triterpenoids epimers. Our bioassays have established that compounds 1-5 and 10 displayed moderate cytotoxic effects, and the structure-activity relationships of cycloartane-type triterpenoids (CTTs) were further examined. Notably, some triterpenoids displayed moderate inhibitory effects against AChE by an in vitro screened experiment. Triterpenoid 7 (Euphorfistrine G, ETG) displayed the potent inhibitory effect with IC50 = 2.45 and Ki = 2.30 µM (inhibition kinetic). And, in silico docking analyses have been performed to investigate the inhibitory mechanism of compound 7.


Subject(s)
Acetylcholinesterase/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Cholinesterase Inhibitors/pharmacology , Euphorbia/chemistry , Triterpenes/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification
15.
BMC Pregnancy Childbirth ; 21(1): 538, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34348690

ABSTRACT

BACKGROUND: The risk of fetal loss is higher among ≥35-year-olds than younger women. The present study aimed to explore the causes and factors influencing fetal loss in advanced maternal age (AMA). METHODS: AMA women with singleton fetuses (< 14 gestational weeks) who underwent their first prenatal examination in the Obstetrics Department of Fujian Maternity and Child Health Hospital from December 2018 to June 2020 were included in this cohort study. Those who terminated the pregnancy before 14 gestational weeks were excluded. A baseline survey was conducted, and follow-up was carried out until the termination of the pregnancy. Clinical data were extracted to analyse the causes of fetal loss among them. In the nested case-control study, the AMA women with fetal loss were enrolled as the case group, and women without fetal loss in the same period were enrolled as the control group, in a 1:2 ratio matched by age and gestational weeks. Logistic regression models were used to analyse the factors influencing fetal loss. RESULTS: A total of 239 women with fetal loss and 478 controls were enrolled. The causes of fetal loss were most often fetal factors, followed by maternal factors, umbilical cord factors, and placental factors. Multivariate logistic regression analysis indicated that junior high school education and below (adjusted odds ratio (aOR) = 5.13, 95% confidence interval (CI): 2.19-12.02), senior high school education (aOR = 4.91, 95% CI: 2.09-11.54), residence in a rural area (aOR = 2.85, 95% CI: 1.92-4.25), unemployment (aOR = 1.81, 95% CI: 1.20-2.71), spontaneous abortion history (aOR = 1.88, 95% CI: 1.26-2.80), preterm birth history (aOR = 11.08, 95% CI: 2.90-42.26), hypertensive disorders of pregnancy (aOR = 7.20, 95% CI: 2.24-23.12), and preterm premature rupture of membranes (aOR = 4.12, 95% CI: 1.53-11.11) were risk factors for fetal loss. CONCLUSIONS: Low educational level, unemployment, abnormal pregnancy/labor history, and pregnancy complications were correlated with the incidence of fetal loss in AMA. Thus, early identification as well as a targeted intervention, should be conducted.


Subject(s)
Fetal Death , Maternal Age , Abortion, Spontaneous/epidemiology , Adult , Case-Control Studies , China/epidemiology , Cohort Studies , Female , Humans , Logistic Models , Multivariate Analysis , Pregnancy , Pregnancy Trimester, Second , Pregnancy Trimester, Third , Risk Factors , Stillbirth/epidemiology
16.
Proc Natl Acad Sci U S A ; 115(29): E6927-E6936, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967177

ABSTRACT

Exosomes, abundant in blood, deliver various molecules to recipient cells. Endothelial cells are directly exposed to circulating substances. However, how endothelial cells respond to serum exosomes (SExos) and the implications in diabetes-associated vasculopathy have never been explored. In the present study, we showed that SExos from diabetic db/db mice (db/db SExos) were taken up by aortic endothelial cells, which severely impaired endothelial function in nondiabetic db/m+ mice. The exosomal proteins, rather than RNAs, mostly account for db/db SExos-induced endothelial dysfunction. Comparative proteomics analysis showed significant increase of arginase 1 in db/db SExos. Silence or overexpression of arginase 1 confirmed its essential role in db/db SExos-induced endothelial dysfunction. This study is a demonstration that SExos deliver arginase 1 protein to endothelial cells, representing a cellular mechanism during development of diabetic endothelial dysfunction. The results expand the scope of blood-borne substances that monitor vascular homeostasis.


Subject(s)
Aorta/metabolism , Arginase/pharmacology , Diabetic Angiopathies , Endothelium, Vascular/metabolism , Exosomes , Animals , Aorta/pathology , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/pathology , Endothelium, Vascular/pathology , Mice
17.
Proc Natl Acad Sci U S A ; 115(7): E1475-E1484, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29382757

ABSTRACT

Tubular cell necrosis is a key histological feature of acute kidney injury (AKI). Necroptosis is a type of programed necrosis, which is executed by mixed lineage kinase domain-like protein (MLKL) upon its binding to the plasma membrane. Emerging evidence indicates that necroptosis plays a critical role in the development of AKI. However, it is unclear whether renal tubular cells undergo necroptosis in vivo and how the necroptotic pathway is regulated during AKI. Repulsive guidance molecule (RGM)-b is a member of the RGM family. Our previous study demonstrated that RGMb is highly expressed in kidney tubular epithelial cells, but its biological role in the kidney has not been well characterized. In the present study, we found that RGMb reduced membrane-associated MLKL levels and inhibited necroptosis in cultured cells. During ischemia/reperfusion injury (IRI) or oxalate nephropathy, MLKL was induced to express on the apical membrane of proximal tubular (PT) cells. Specific knockout of Rgmb in tubular cells (Rgmb cKO) increased MLKL expression at the apical membrane of PT cells and induced more tubular cell death and more severe renal dysfunction compared with wild-type mice. Treatment with the necroptosis inhibitor Necrostatin-1 or GSK'963 reduced MLKL expression on the apical membrane of PT cells and ameliorated renal function impairment after IRI in both wild-type and Rgmb cKO mice. Taken together, our results suggest that proximal tubular cell necroptosis plays an important role in AKI, and that RGMb protects against AKI by inhibiting MLKL membrane association and necroptosis in proximal tubular cells.


Subject(s)
Acute Kidney Injury/prevention & control , Apoptosis , Kidney Tubules/pathology , Necrosis , Nerve Tissue Proteins/physiology , Protein Kinases/metabolism , Reperfusion Injury/complications , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Animals , Cell Adhesion Molecules, Neuronal , GPI-Linked Proteins , Kidney Tubules/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protective Agents/pharmacology , Protein Kinases/genetics
18.
J Am Soc Nephrol ; 31(9): 2097-2115, 2020 09.
Article in English | MEDLINE | ID: mdl-32641397

ABSTRACT

BACKGROUND: Gentamicin is a potent aminoglycoside antibiotic that targets gram-negative bacteria, but nephrotoxicity limits its clinical application. The cause of gentamicin-induced AKI has been attributed mainly to apoptosis of the proximal tubule cells. However, blocking apoptosis only partially attenuates gentamicin-induced AKI in animals. METHODS: Mice treated with gentamicin for 7 days developed AKI, and programmed cell death pathways were examined using pharmacologic inhibitors and in RIPK3-deficient mice. Effects in porcine and murine kidney cell lines were also examined. RESULTS: Gentamicin caused a low level of apoptosis in the proximal tubules and significant ultrastructural alterations consistent with necroptosis, occurring predominantly in the collecting ducts (CDs), including cell and organelle swelling and rupture of the cell membrane. Upregulation of the key necroptotic signaling molecules, mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting serine/threonine-protein kinase 3 (RIPK3), was detected in gentamicin-treated mice and in cultured renal tubule cells. In addition, gentamicin induced apical accumulation of total and phosphorylated MLKL (pMLKL) in CDs in mouse kidney. Inhibiting a necroptotic protein, RIPK1, with necrostatin-1 (Nec-1), attenuated gentamicin-induced necrosis and upregulation of MLKL and RIPK3 in mice and cultured cells. Nec-1 also alleviated kidney inflammation and fibrosis, and significantly improved gentamicin-induced renal dysfunction in mice. Furthermore, deletion of RIPK3 in the Ripk3-/- mice significantly attenuated gentamicin-induced AKI. CONCLUSIONS: A previously unrecognized role of programmed necrosis in collecting ducts in gentamicin-induced kidney injury presents a potential new therapeutic strategy to alleviate gentamicin-induced AKI through inhibiting necroptosis.


Subject(s)
Acute Kidney Injury/chemically induced , Gentamicins/toxicity , Kidney Tubules, Collecting/drug effects , Necroptosis/drug effects , Animals , Cells, Cultured , Disease Models, Animal , Imidazoles/pharmacology , Indoles/pharmacology , Kidney Tubules, Collecting/pathology , Kidney Tubules, Collecting/ultrastructure , Mice , Mice, Inbred C57BL , Protein Kinases/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/physiology
19.
Sensors (Basel) ; 21(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34884163

ABSTRACT

With the wide application of convolutional neural networks (CNNs), a variety of ship detection methods based on CNNs in synthetic aperture radar (SAR) images were proposed, but there are still two main challenges: (1) Ship detection requires high real-time performance, and a certain detection speed should be ensured while improving accuracy; (2) The diversity of ships in SAR images requires more powerful multi-scale detectors. To address these issues, a SAR ship detector called Duplicate Bilateral YOLO (DB-YOLO) is proposed in this paper, which is composed of a Feature Extraction Network (FEN), Duplicate Bilateral Feature Pyramid Network (DB-FPN) and Detection Network (DN). Firstly, a single-stage network is used to meet the need of real-time detection, and the cross stage partial (CSP) block is used to reduce the redundant parameters. Secondly, DB-FPN is designed to enhance the fusion of semantic and spatial information. In view of the ships in SAR image are mainly distributed with small-scale targets, the distribution of parameters and computation values between FEN and DB-FPN in different feature layers is redistributed to solve the multi-scale detection. Finally, the bounding boxes and confidence scores are given through the detection head of YOLO. In order to evaluate the effectiveness and robustness of DB-YOLO, comparative experiments with the other six state-of-the-art methods (Faster R-CNN, Cascade R-CNN, Libra R-CNN, FCOS, CenterNet and YOLOv5s) on two SAR ship datasets, i.e., SSDD and HRSID, are performed. The experimental results show that the AP50 of DB-YOLO reaches 97.8% on SSDD and 94.4% on HRSID, respectively. DB-YOLO meets the requirement of real-time detection (48.1 FPS) and is superior to other methods in the experiments.


Subject(s)
Radar , Ships , Neural Networks, Computer , Records , Semantics
20.
Sensors (Basel) ; 21(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34283130

ABSTRACT

The classification and recognition of radar clutter is helpful to improve the efficiency of radar signal processing and target detection. In order to realize the effective classification of uniform circular array (UCA) radar clutter data, a classification method of ground clutter data based on the chaotic genetic algorithm is proposed. In this paper, the characteristics of UCA radar ground clutter data are studied, and then the statistical characteristic factors of correlation, non-stationery and range-Doppler maps are extracted, which can be used to classify ground clutter data. Based on the clustering analysis, results of characteristic factors of radar clutter data under different wave-controlled modes in multiple scenarios, we can see: in radar clutter clustering of different scenes, the chaotic genetic algorithm can save 34.61% of clustering time and improve the classification accuracy by 42.82% compared with the standard genetic algorithm. In radar clutter clustering of different wave-controlled modes, the timeliness and accuracy of the chaotic genetic algorithm are improved by 42.69% and 20.79%, respectively, compared to standard genetic algorithm clustering. The clustering experiment results show that the chaotic genetic algorithm can effectively classify UCA radar's ground clutter data.


Subject(s)
Algorithms , Radar , Cluster Analysis , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL