Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Cell ; 35(1): 453-468, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36190337

ABSTRACT

RAC/Rho of plant (ROP) GTPases are major molecular switches that control diverse signaling cascades for plant growth, development, and defense. Here, we discovered a signaling node that connects RAC/ROPs to cytokinins. Rice (Oryza sativa) plants develop a fibrous root system mainly composed of crown roots. Cytokinin signaling via a phosphorelay system is critical for crown root development. We show that OsRopGEF10, which activates RAC/ROPs, acts upstream of the cytoplasmic-nuclear shuttling phosphotransfer proteins AHPs of the cytokinin signaling pathway to promote crown root development. Mutations of OsRopGEF10 induced hypersensitivity to cytokinin, whereas overexpressing this gene reduced the cytokinin response. Loss of OsRopGEF10 function reduced the expression of the response regulator gene OsRR6, a repressor of cytokinin signaling, and impaired crown root development. Mutations in OsAHP1/2 led to increased crown root production and rescued the crown root defect of Osropgef10. Furthermore, auxin activates the ROP GTPase OsRAC3, which attenuates cytokinin signaling for crown root initiation. Molecular interactions between OsRopGEF10, OsRAC3, and OsAHP1/2 implicate a mechanism whereby OsRopGEF10-activated OsRAC3 recruits OsAHP1/2 to the cortical cytoplasm, sequestering them from their phosphorelay function in the nucleus. Together, our findings uncover the OsRopGEF10-OsRAC3-OsAHP1/2 signaling module, establish a link between RAC/ROPs and cytokinin, and reveal molecular crosstalk between auxin and cytokinin during crown root development.


Subject(s)
Oryza , Oryza/metabolism , GTP Phosphohydrolase Activators/metabolism , rho GTP-Binding Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Signal Transduction , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant
2.
J Cell Mol Med ; 26(2): 563-569, 2022 01.
Article in English | MEDLINE | ID: mdl-34910369

ABSTRACT

Aresenic trioxide (ATO) is proven to be active against leukaemia cells by inducing apoptosis and differentiation. Even though ATO could effectively induce remissions of leukaemia cells, the drug resistance was observed occasionally. To further dissect the mechanism of ATO resistance, we selected the ATO-resistant SH-SY5Y cells and found that Bcl-2 controlled the sensitivity of ATO in SH-SY5Y cells. We report that necroptosis, autophagy, NF-ƘB and MAPK signalling pathway are not involved in ATO-induced apoptosis. Moreover, the ATO-resistant cells showed distinct mitochondrial morphology compared with that of ATO-sensitive cells. Intriguingly, nude mice-bearing ATO-sensitive cells derived xenograft tumours are more sensitive to ATO treatment compared with that of ATO-resistant cells. These data demonstrate that cancer cells can acquire the ATO-resistance ability by increasing the Bcl-2 expression.


Subject(s)
Antineoplastic Agents , Arsenicals , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Arsenic Trioxide/pharmacology , Arsenicals/pharmacology , Cell Line, Tumor , Humans , Mice , Mice, Nude , Oxides/pharmacology
3.
Analyst ; 148(1): 153-162, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36477081

ABSTRACT

Herein, nanoflower-shaped Mn-doped NiO nano-enzyme composites with high catalytic performance and excellent conductivity were grown on 3D flexible carbon fiber cloth (CFC) via hydrothermal and calcination methods to construct an efficient flexible glucose-sensitive detection electrode. For electrochemical-based sensors, high conductivity is a prerequisite for reliable data acquisition. To avoid the problems associated with using insulating Nafion or paraffin binders, we adopted a strategy of directly growing Mn-doped NiO onto the electrode surface, thereby avoiding interference due to the oxidization of species present in real samples at higher redox potentials, since Ni2+/Ni3+ has low redox potential. Therefore, the electrode has a linear range of 3-5166 µM for glucose detection, with a detection limit as low as 0.28 µM, showing excellent selectivity and reproducibility. The composite-modified electrode provides accurate detection results with real human serum samples, which are in full agreement with those of commercial blood glucose meters. In addition, we tested the glucose content in tea and sorghum fermentation broth at different stages, further expanding the application range of the Mn-NiO sensors. The nano-enzyme sensor fabricated herein offers a new idea for further integration into wearable flexible electronic devices for accurate glucose detection.


Subject(s)
Nanostructures , Humans , Reproducibility of Results , Glucose , Electrodes , Blood Glucose Self-Monitoring
4.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 91-96, 2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35809299

ABSTRACT

Hypertension occurred in 50% obstructive sleep apnea-hypopnea syndrome (OSAHS) patients meanwhile OSAHS occurred in 30% hypertension patients. The present study aimed to explore the molecular mechanism of GATA2-EDN1-AGT induced hypertension in the development of obstructive sleep apnea-hypopnea syndrome. OSAHS patients (56 cases: 36 cases of male, 20 cases of female, 42~60 years old) were divided into two groups (case group: patients with hypertension monitored by 24 h ambulatory blood pressure and polysomnography; control group: patients without hypertension). Wistar rats were used to establish the OSAHS model (narrow pharyngeal cavity). PaO2 and PaCO2 of patients and rats were measured by an automatic blood gas analyzer. The profile of total protein in the OSAHS group and normal group was evaluated. Protein-protein-interaction (PPI) was carried out to show all matter proteins related. The levels of EDN-1, AGTII and atrial natriuretic peptide (ANP) in blood samples of patients and rats were analyzed by enzyme-linked immunosorbent assay (ELISA). The expression of GATA2, EDN1, endothelin-converting enzyme 1 (ECE-1) and AGTⅡ was measured. The results showed that SaO2 and AHI were positively associated with systolic pressure (P<0.05) in OSAHS patients. There was no correlation among other indexes (P>0.05). It was also observed that GATA2 had a strong relationship with AGTⅡ and EDN1. The results of ELISA presented that the levels of EDN1, AGTⅡ and ANP in the OSAHS group of human and animal models were significantly increased (P<0.05). The results of immunochemistry showed that the expression of GATA2 and AGTⅡ in the vascular of OSAHS group was upregulated manifestly (P<0.05). It was concluded that OSAHS can induce AHI, which increases hypertension via the GATA2-EDN1-AGT Ⅱ axis.


Subject(s)
Hypertension , Sleep Apnea, Obstructive , Angiotensinogen , Animals , Atrial Natriuretic Factor , Blood Pressure Monitoring, Ambulatory , Endothelin-1 , Female , GATA2 Transcription Factor , Hypertension/etiology , Male , Rats , Rats, Wistar , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Syndrome
5.
Neoplasma ; 69(6): 1349-1358, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36305691

ABSTRACT

Previous studies have shown that PHF21A is associated with the initiation and progression of various tumors. However, its role in hepatocellular carcinoma (HCC) is still unclear. Thus, this study aimed to determine the expression and clinical significance of PHF21A in HCC. PHF21A expression in 201 liver cancer samples and 129 adjacent normal tissues was detected by immunohistochemistry. The correlation between PHF21A expression and the clinicopathological features and prognosis of HCC was verified in 70 other liver tissue microarray samples. The relationship between PHF21A expression and HCC immune cell infiltration was explored via the Tumor Immune Estimation Resource (TIMER). The mechanism underlying the effect of PHF21A on HCC progression was analyzed by gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) network analysis. Immunohistochemical staining showed that PHF21A expression in HCC tissue was significantly lower than that in adjacent nontumor liver tissue and was associated with patient sex, tumor size, metastasis, and Edmondson grade (p<0.05). Kaplan-Meier analysis demonstrated that low PHF21A expression was associated with a poor prognosis, and Cox regression analysis showed that PHF21A was an independent predictor of prognosis. TIMER analysis showed that PHF21A is positively correlated with tumor immune cell infiltration levels. Functional annotation indicated that PHF21A is involved in important pathways, including transcriptional deregulation pathways in cancer. Finally, in vitro experiments confirmed the low expression of PHF21A in HCC cells. PHF21A affects the progression and prognosis of HCC, suggesting that PHF21A may play an important role in monitoring and preventing the development of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Prognosis , Biomarkers , Kaplan-Meier Estimate , Biomarkers, Tumor/metabolism , Histone Deacetylases
6.
Ecotoxicol Environ Saf ; 213: 112022, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33609999

ABSTRACT

A reliable and simple modified QuEChERS method with UPLC-MS/MS was developed for the simultaneous determination of six pesticides (dimethomorph, imidaclothiz, lufenuron, methoxyfenozide, pyridaben, spinetoram) and their metabolites in pak choi. Method validation indicated good linearity (R2 ≥ 0.99), accuracy (recoveries of 75%-112%), sensitivity (limits of quantification, 0.002-0.01 mg kg-1), and precision (relative standard deviations ≤ 21%), and matrix effects were -36-28%. The half-lives of the six pesticides in pak choi were 2.2-12 d under open field and greenhouse conditions. Considering the short growth cycle of pak choi, the terminal residue levels (0.046-7.8 mg kg-1) and the relevant maximum residue limits (MRLs) of some countries, 5 d was recommended as the pre-harvest interval for the six pesticides on pak choi. Dietary risk assessment revealed that the risk quotients were 3.1%-58% for different gender and age groups in China, indicating none unacceptable public health risk for general population. The results showed that all the six pesticides degraded faster and the terminal residues were much lower under open field conditions than those under greenhouse conditions, which was mainly due to the influence of rainfall, sunlight and other environmental factors. This work was thus significant in assessing the dissipation fate and food safety risks of the six pesticides on pak choi and facilitated the establishment of maximum residue limits.


Subject(s)
Brassica/chemistry , Dietary Exposure/statistics & numerical data , Pesticide Residues/analysis , Pesticides/analysis , China , Chromatography, High Pressure Liquid , Chromatography, Liquid/methods , Food Safety , Hydrazines , Juvenile Hormones , Macrolides , Pesticides/toxicity , Risk Assessment , Tandem Mass Spectrometry/methods
7.
World J Microbiol Biotechnol ; 36(2): 27, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31997003

ABSTRACT

A phosphate solubilizing bacterium ZB was isolated from the rhizosphere soil of Araucaria, which falls into the species Pantoea agglomerans. Optimization for phosphate solubilization by strain ZB was performed. At optimum culture conditions, the isolate showed great ability of solubilizing different insoluble inorganic phosphate sources viz. Ca3(PO4)2 (TCP), Hydroxyapatite (HP), CaHPO4, AlPO4, FePO4 along with rock phosphates (RPs). Inoculation with planktonic cells was found to enhance dissolved phosphorous as compared to that achieved by symplasma inoculation. Besides inoculation with different status of cells, pre-incubation could also exert a great effect on phosphate solubilization ability of P. agglomerans. When isolate ZB was cultured with glucose as carbon sources, phosphorous was more efficiently dissolved from HP and RP without pre-incubation in comparison to that obtained with pre-cultivation. Pre-cultivation, however, was more suitable for P solubilization than no pre-cultivation when bacteria were grown with xylose. A positive correlation was detected between the production of organic acids and phosphate solubilization. P. agglomerans ZB possessed many plant growth promotion traits such as N2 fixation and production of indole 3-acetic acid, phytase, alkaline phosphatase. Pot experiment showed inoculation with single isolate ZB or biofertilizer prepared from semi-solid fermentation of isolate ZB with spent mushroom substrate (SMS) compost could enhance plant growth with respect to number of leaves, plant leave area, stem diameter, root length, root dry mass, shoot dry mass and biomass when compared to the abiotic control, revealing strain ZB could be a promising environmental-friendly biofertilizer to apply for agricultural field.


Subject(s)
Araucaria/microbiology , Pantoea/isolation & purification , Phosphates/chemistry , Carbon/chemistry , Fermentation , Glucose/chemistry , Nitrogen Fixation , Pantoea/metabolism , Rhizosphere , Soil Microbiology , Solubility
8.
Phys Chem Chem Phys ; 21(5): 2755-2763, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30666324

ABSTRACT

All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells.

9.
Sensors (Basel) ; 18(7)2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29958441

ABSTRACT

Due to the narrow space and a harsh chemical environment in the sterilization processes for the end-effector of surgical robots, it is difficult to install and integrate suitable sensors for the purpose of effective and precise force control. This paper presents an innovative tension sensor for estimation of grasping force in our laparoscope surgical robot. The proposed sensor measures the tension of cable using fiber gratings (FBGs) which are pasted in the grooves on the inclined cantilevers of the sensor. By exploiting the stain measurement characteristics of FBGs, the small deformation of the inclined cantilevers caused by the cable tension can be measured. The working principle and the sensor model are analyzed. Based on the sensor model, the dimensions of the sensor are designed and optimized. A dedicated experimental setup is established to calibrate and test the sensor. The results of experiments for estimation the grasping force validate the sensor.


Subject(s)
Equipment Design , Laparoscopes/standards , Laparoscopy/instrumentation , Robotics/instrumentation , Surgery, Computer-Assisted/instrumentation , Calibration , Sterilization
10.
Plant Cell ; 26(9): 3501-18, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25217509

ABSTRACT

ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cell Polarity , GTP Phosphohydrolases/metabolism , Indoleacetic Acids/metabolism , Seedlings/growth & development , Seeds/embryology , Arabidopsis/cytology , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Polarity/drug effects , Cell Polarity/genetics , GTP Phosphohydrolases/genetics , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Glucuronidase/metabolism , Green Fluorescent Proteins/metabolism , Indoleacetic Acids/pharmacology , Mutation/genetics , Phenotype , Plant Roots/drug effects , Plant Roots/physiology , Protein Transport/drug effects , Seedlings/cytology , Seedlings/drug effects , Seeds/cytology , Seeds/drug effects , Seeds/genetics , Vacuoles/drug effects , Vacuoles/metabolism
11.
Sensors (Basel) ; 17(4)2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28425923

ABSTRACT

The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.

12.
J Am Acad Dermatol ; 75(1): 83-98.e4, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27180926

ABSTRACT

BACKGROUND: Secukinumab, a fully human anti-interleukin-17A monoclonal antibody, has demonstrated efficacy and safety in patients with moderate to severe plaque psoriasis. OBJECTIVE: We reviewed safety data from the secukinumab psoriasis phase II/III program. METHODS: Data were pooled from 10 phase II/III secukinumab psoriasis studies. RESULTS: Analysis included 3993 subjects; 3430 received secukinumab, representing 2725 subject-years (SYs) of exposure. Over 52 weeks, for secukinumab 300 mg, 150 mg, and etanercept, respectively, exposure-adjusted incidence rates (IRs) per 100 SYs were comparable across treatments for total adverse events (AEs; 236.1, 239.9, and 243.4, respectively); infections (91.1, 85.3, and 93.7, respectively); serious AEs (7.4, 6.8, and 7.0, respectively); serious infections (1.4, 1.1, and 1.4, respectively); malignant or unspecified tumors (0.77, 0.97, and 0.68, respectively); and adjudicated major adverse cardiovascular events (0.42, 0.35, and 0.34, respectively). AEs were not dose-related except for nonserious, mild/moderate, skin/mucosal candidiasis (IRs 3.55, 1.85, and 1.37 for secukinumab 300 mg, 150 mg, and etanercept, respectively). LIMITATIONS: There was a limited number of patients in comparator groups and the exposure to placebo was short. CONCLUSION: Secukinumab had a favorable safety profile, had no meaningful difference between the 300- and 150-mg doses and, in terms of safety, was comparable to etanercept over 52 weeks in patients with moderate to severe plaque psoriasis.


Subject(s)
Antibodies, Monoclonal/adverse effects , Immunosuppressive Agents/adverse effects , Infections/chemically induced , Neoplasms/chemically induced , Neutropenia/chemically induced , Psoriasis/drug therapy , Adult , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Humanized , Cardiovascular Diseases/chemically induced , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Etanercept/administration & dosage , Etanercept/adverse effects , Female , Humans , Immunosuppressive Agents/administration & dosage , Inflammatory Bowel Diseases/chemically induced , Interleukin-17/antagonists & inhibitors , Male , Mental Disorders/chemically induced , Middle Aged , Randomized Controlled Trials as Topic , Severity of Illness Index , Time Factors
13.
Opt Lett ; 40(13): 2989-92, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26125349

ABSTRACT

Single-molecule localization microscopy achieves sub-diffraction-limit resolution by localizing a sparse subset of stochastically activated emitters in each frame. Its temporal resolution is limited by the maximal emitter density that can be handled by the image reconstruction algorithms. Multiple algorithms have been developed to accurately locate the emitters even when they have significant overlaps. Currently, compressive-sensing-based algorithm (CSSTORM) achieves the highest emitter density. However, CSSTORM is extremely computationally expensive, which limits its practical application. Here, we develop a new algorithm (MempSTORM) based on two-dimensional spectrum analysis. With the same localization accuracy and recall rate, MempSTORM is 100 times faster than CSSTORM with ℓ(1)-homotopy. In addition, MempSTORM can be implemented on a GPU for parallelism, which can further increase its computational speed and make it possible for online super-resolution reconstruction of high-density emitters.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Microscopy
14.
Opt Express ; 22(10): 12160-76, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921337

ABSTRACT

One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Muscle, Skeletal/cytology , Nanotechnology/methods , Photons , Animals , Cells, Cultured , Signal-To-Noise Ratio
15.
Plant Cell ; 23(8): 2880-94, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21828289

ABSTRACT

The root stem cell niche defines the area that specifies and maintains the stem cells and is essential for the maintenance of root growth. Here, we characterize and examine the functional role of a quiescent center (QC)-expressed RAC/ROP GTPase activator, RopGEF7, in Arabidopsis thaliana. We show that RopGEF7 interacts with At RAC1 and overexpression of a C-terminally truncated constitutively active RopGEF7 (RopGEF7ΔC) activates RAC/ROP GTPases. Knockdown of RopGEF7 by RNA interference causes defects in embryo patterning and maintenance of the QC and leads to postembryonic loss of root stem cell population. Gene expression studies indicate that RopGEF7 is required for root meristem maintenance as it regulates the expression of PLETHORA1 (PLT1) and PLT2, which are key transcription factors that mediate the patterning of the root stem cell niche. Genetic analyses show that RopGEF7 interacts with PLT genes to regulate QC maintenance. Moreover, RopGEF7 is induced transcriptionally by auxin while its function is required for the expression of the auxin efflux protein PIN1 and maintenance of normal auxin maxima in embryos and seedling roots. These results suggest that RopGEF7 may integrate auxin-derived positional information in a feed-forward mechanism, regulating PLT transcription factors and thereby controlling the maintenance of root stem cell niches.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/embryology , Arabidopsis/physiology , Guanine Nucleotide Exchange Factors/metabolism , Indoleacetic Acids/pharmacology , Stem Cell Niche/physiology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA, Complementary/genetics , Gene Expression , Gene Expression Regulation, Plant , Guanine Nucleotide Exchange Factors/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Meristem/drug effects , Meristem/embryology , Meristem/genetics , Meristem/physiology , Mutation , Plant Roots/drug effects , Plant Roots/embryology , Plant Roots/genetics , Plant Roots/physiology , Plants, Genetically Modified , RNA, Plant/genetics , Recombinant Fusion Proteins , Seedlings/drug effects , Seedlings/embryology , Seedlings/genetics , Seedlings/physiology , Signal Transduction/physiology , Stem Cells/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124476, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38776670

ABSTRACT

Malononitrile is a very important chemical material and has wide application fields in production of medicines, pesticides, and extraction of gold. However, its nonnegligible hypertoxicity inspired researchers to develop more efficient analysis techniques to sensitively and selectively detect malononitrile. Nopinone derivatives initiated by our research group have been developed as a class of organic fluorescent chemosensors for identifying multiple analytes in recent years. Different heterocyclic compounds based on nopinone were designed and synthesized to be applied in the fields of environmental analysis, food detection and bioimaging. Nevertheless, the comparison research on the optical properties of fluorescent compounds containing the nopinyl matrix with other structural analogs including alkyl, cyclohexyl and phenyl groups was deficient. Herein, four 4-(1H-imidazol-2-yl)benzaldehyde-based ratiometric fluorescent chemosensors based on o-dimethyl cyclohexyl, phenyl and nopinyl units for recognizing malononitrile were designed and developed, and their differences in the optical properties and detection performances were investigated by using spectral analysis combined with theoretical calculations. Moreover, the nopinone-based 4-(1H-imidazol-2-yl)benzaldehyde fluorescent chemosensor NMZQ was successfully applied in the dual channel fluorescence bioimaging of malononitrile in living HeLa cells and zebrafish, which attributed to its outstanding spectral property and detection performance.

17.
J Colloid Interface Sci ; 671: 216-231, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38801796

ABSTRACT

Colorectal cancer (CRC) is a prevalent malignancy with insidious onset and diagnostic challenges, highlighting the need for therapeutic approaches to enhance theranostic outcomes. In this study, we elucidated the unique temperature-resistant properties of the oncolytic vaccinia virus (OVV), which can synergistically target tumors under photothermal conditions. To capitalize on this characteristic, we harnessed the potential of the OVV by surface-loading it with indocyanine green (ICG) and encapsulating it within a platelet membrane (PLTM), resulting in the creation of PLTM-ICG-OVV (PIOVV). This complex seamlessly integrates virotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT). The morphology, size, dispersion stability, optical properties, and cellular uptake of PIOVV were evaluated using transmission electron microscopy (TEM). In vitro and in vivo experiments revealed specificity of PIOVV for cancer cells; it effectively induced apoptosis and suppressed CT26 cell proliferation. In mouse models, PIOVV exhibits enhanced fluorescence at tumor sites, accompanied by prolonged blood circulation. Under 808 nm laser irradiation, PIOVV significantly inhibited tumor growth. This strategy holds the potential for advancing phototherapy, oncolytic virology, drug delivery, and tumor-specific targeting, particularly in the context of CRC theranostics.


Subject(s)
Colorectal Neoplasms , Indocyanine Green , Oncolytic Virotherapy , Oncolytic Viruses , Photochemotherapy , Vaccinia virus , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Animals , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology , Mice , Vaccinia virus/physiology , Oncolytic Viruses/physiology , Humans , Oncolytic Virotherapy/methods , Blood Platelets , Cell Line, Tumor , Mice, Inbred BALB C , Apoptosis/drug effects , Cell Proliferation/drug effects , Optical Imaging , Photothermal Therapy , Combined Modality Therapy , Particle Size , Surface Properties , Infrared Rays , Mice, Nude
18.
Environ Sci Pollut Res Int ; 30(31): 76867-76880, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37247150

ABSTRACT

Bacillus cellulasensis Zn-B isolated from vegetable soil was highly adaptable to Zinc (Zn) and Cadmium (Cd). Cd, but not Zn, adversely affected the total protein spectrum and functional groups of Bacillus cellulasensis Zn-B. Up to 31 metabolic pathways and 216 metabolites of Bacillus cellulasensis Zn-B were significantly changed by Zn and Cd (Zn&Cd). Some metabolic pathways and metabolites related to functional groups of sulfhydryl (-SH) and amine (-NH-) metabolism were enhanced by Zn&Cd addition. The cellulase activity of Bacillus cellulasensis Zn-B was up to 8.58 U mL-1, increased to 10.77 U mL-1 in Bacillus cellulasensis Zn-B + 300 mg L-1 Zn, and maintained at 6.13 U mL-1 in Bacillus cellulasensis Zn-B + 50 mg L-1 Cd. The vegetables' cellulose content was decreased by 25.05-52.37% and 40.28-70.70% under the action of Bacillus cellulasensis Zn-B and Bacillus cellulasensis Zn-B + 300 mg L-1 Zn. Those results demonstrated that Zn could significantly enhance cellulase activity and biodegradability of Bacillus cellulasensis Zn-B to vegetable cellulose. Bacillus cellulasensis Zn-B can survive in vegetable soil accumulated with Zn&Cd. The tolerance concentration and adsorption capacity of Bacillus cellulasensis Zn-B to Zn were up to 300 mg L-1 and 56.85%, indicating that Bacillus cellulasensis Zn-B acting as a thermostability biological agent had an essential advantage in accelerating the degradation of discarded vegetables by Zn and were beneficial to maintain organic matter content of vegetable soil.


Subject(s)
Cellulases , Soil Pollutants , Cadmium/analysis , Zinc/analysis , Vegetables , Soil , Soil Pollutants/analysis
19.
Sci Total Environ ; 866: 161381, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36621509

ABSTRACT

Pyrolytic biochar (PL-BC, pyrochar) and hydrothermal biochar (HT-BC, hydrochar) derived from branches and leaves of tea plants had different pH, electrical conductivity (EC), total carbon nitrogen content, BET surface area, total pore volume, average pore diameter, and functional groups. HT-BC had a larger specific surface area and more functional groups than PL-BC. Ralstonia Bcul-1 (R-B) was the dominant and functional bacteria in a fertilized vegetable soil supplemented with TBB-immobilized R-B (TBB + R-B). R-B vitality was more closely related to BET surface area, total pore volume, and functional groups of tea-based biochar (TBB: PL-BC and HT-BC). R-B was able to maintain high oxidase activity. R-B and TBB + R-B can increase the activities of urease and peroxidase in vegetable soil playing an essential role in the biotransformation of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N). TBB was able to simultaneously increase the content of NO3--N and NH4+-N, and TBB + R-B also significantly increased NO3--N content but decreased NH4+-N content in a fertilized vegetable soil. These results indicated that R-B promoted nitrification in the soil, i.e. conversion of NH4+-N into NO3--N, by enhancing the activities of urease and peroxidase. R-B had high adsorption capacity for cadmium (Cd) and chromium (Cr) (Cd&Cr: Cd and Cr). Moreover, TBB + R-B was able to convert weak acid extractable and reducible Cd&Cr into a more stable residual fraction and oxidizable Cd&Cr. The overall effect of the treatments was to reduce plant uptake of Cd&Cr by cabbage. TBB + R-B significantly promoted R-B growth, changed inorganic nitrogen speciation, increased NO3--N supply, reduced Cd&Cr bioavailability, and decreased plant tissue Cd&Cr content.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Nitrates , Chromium/analysis , Vegetables/metabolism , Biological Availability , Nitrogen/metabolism , Urease , Charcoal/chemistry , Peroxidases/metabolism , Tea , Soil Pollutants/analysis
20.
Sci Total Environ ; 897: 165321, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37419352

ABSTRACT

Pesticide residues in citrus may cause health risks in related juice products, and bring much uncertainty during the processing procedures. In this study, based on the dispersive solid-phase extraction (d-SPE) and UPLC-MS/MS, the residual levels of ten analytes in citrus and its processed products were monitored. The results showed that dissipation of the pesticides followed the first-order kinetics and the half-lives in citrus varied greatly, ranging from 6.36 to 63.0 days. The terminal residues of the five pesticides at harvest time were <0.01-0.302 and <0.01-0.124 mg/kg in raw citrus and citrus flesh, respectively, all of which were lower than the corresponding maximum residue limits (MRLs) of 0.5-1 mg/kg. In the processing experiments, the residues of ten analytes in sterilized juice, concentrated juice, and citrus essential oil were in the range of <0.01 to 0.442 mg/kg, <0.01 to 1.16 mg/kg, and <0.01 to 44.0 mg/kg, respectively, and the corresponding processing factors (PFs) were 0.127-1.00, 0.023-3.06, and 0.006-39.2. Particularly, in citrus essential oil, the PFs of etoxazole, fluazinam, lufenuron and spirotetramat-keto-hydroxy were 1.68-39.2, exhibiting obvious enrichment effects. By integrating the residue data of the field trials and the PFs, the acute and chronic dietary risks of the target pesticides in citrus juice were 0.031-1.83 % and 0.002-2.51 %, respectively, which were far lower than 100 %, demonstrating no unacceptable risk to human health. This work provides basic data for the establishment of the MRLs and dietary exposure risk assessment for processed citrus products.


Subject(s)
Citrus , Pesticide Residues , Pesticides , Humans , Pesticides/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Pesticide Residues/analysis , Fruit/chemistry , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL