Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Blood ; 140(22): 2371-2384, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36054916

ABSTRACT

We found that in regenerative erythropoiesis, the erythroid progenitor landscape is reshaped, and a previously undescribed progenitor population with colony-forming unit-erythroid (CFU-E) activity (stress CFU-E [sCFU-E]) is expanded markedly to restore the erythron. sCFU-E cells are targets of erythropoietin (Epo), and sCFU-E expansion requires signaling from the Epo receptor (EpoR) cytoplasmic tyrosines. Molecularly, Epo promotes sCFU-E expansion via JAK2- and STAT5-dependent expression of IRS2, thus engaging the progrowth signaling from the IGF1 receptor (IGF1R). Inhibition of IGF1R and IRS2 signaling impairs sCFU-E cell growth, whereas exogenous IRS2 expression rescues cell growth in sCFU-E expressing truncated EpoR-lacking cytoplasmic tyrosines. This sCFU-E pathway is the major pathway involved in erythrocytosis driven by the oncogenic JAK2 mutant JAK2(V617F) in myeloproliferative neoplasm. Inability to expand sCFU-E cells by truncated EpoR protects against JAK2(V617F)-driven erythrocytosis. In samples from patients with myeloproliferative neoplasm, the number of sCFU-E-like cells increases, and inhibition of IGR1R and IRS2 signaling blocks Epo-hypersensitive erythroid cell colony formation. In summary, we identified a new stress-specific erythroid progenitor cell population that links regenerative erythropoiesis to pathogenic erythrocytosis.


Subject(s)
Erythropoietin , Myeloproliferative Disorders , Neoplasms , Polycythemia , Humans , Erythropoiesis/physiology , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Polycythemia/metabolism , Erythropoietin/metabolism , Myeloproliferative Disorders/metabolism , Erythroid Precursor Cells/metabolism , Neoplasms/metabolism , Receptor, IGF Type 1/metabolism
2.
Am J Physiol Renal Physiol ; 314(4): F501-F516, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29187371

ABSTRACT

The erythropoietin receptor (EpoR) is widely expressed but its renoprotective action is unexplored. To examine the role of EpoR in vivo in the kidney, we induced acute kidney injury (AKI) by ischemia-reperfusion in mice with different EpoR bioactivities in the kidney. EpoR bioactivity was reduced by knockin of wild-type human EpoR, which is hypofunctional relative to murine EpoR, and a renal tubule-specific EpoR knockout. These mice had lower EPO/EpoR activity and lower autophagy flux in renal tubules. Upon AKI induction, they exhibited worse renal function and structural damage, more apoptosis at the acute stage (<7 days), and slower recovery with more tubulointerstitial fibrosis at the subacute stage (14 days). In contrast, mice with hyperactive EpoR signaling from knockin of a constitutively active human EpoR had higher autophagic flux, milder kidney damage, and better renal function at the acute stage but, surprisingly, worse tubulointerstitial fibrosis and renal function at the subacute stage. Either excess or deficient EpoR activity in the kidney was associated with abnormal peritubular capillaries and tubular hypoxia, creating a "U-shaped" relationship. The direct effects of EpoR on tubular cells were confirmed in vitro by a hydrogen peroxide model using primary cultured proximal tubule cells with different EpoR activities. In summary, normal erythropoietin (EPO)/EpoR signaling in renal tubules provides defense against renal tubular injury maintains the autophagy-apoptosis balance and peritubular capillary integrity. High and low EPO/EpoR bioactivities both lead to vascular defect, and high EpoR activity overides the tubular protective effects in AKI recovery.


Subject(s)
Acute Kidney Injury/metabolism , Capillaries/metabolism , Erythropoietin/metabolism , Kidney Tubules, Proximal/blood supply , Kidney Tubules, Proximal/metabolism , Neovascularization, Physiologic , Receptors, Erythropoietin/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Apoptosis , Autophagy , Capillaries/pathology , Capillaries/physiopathology , Cell Hypoxia , Cells, Cultured , Disease Models, Animal , Fibrosis , Humans , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/physiopathology , Mice, 129 Strain , Mice, Transgenic , Receptors, Erythropoietin/deficiency , Receptors, Erythropoietin/genetics , Signal Transduction
3.
Blood ; 135(25): 2209-2210, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32556132
4.
Blood ; 122(24): 3964-72, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24113870

ABSTRACT

Erythropoietin (Epo) binding to the Epo receptor (EpoR) elicits downstream signaling that is essential for red blood cell production. One important negative regulatory mechanism to terminate Epo signaling is Epo-induced EpoR endocytosis and degradation. Defects in this mechanism play a key role in the overproduction of erythrocytes in primary familial and congenital polycythemia (PFCP). Here we have identified a novel mechanism mediating Epo-dependent EpoR internalization. Epo induces Cbl-dependent ubiquitination of the p85 regulatory subunit of PI3K, which binds to phosphotyrosines on EpoR. Ubiquitination allows p85 to interact with the endocytic protein epsin-1, thereby driving EpoR endocytosis. Knockdown of Cbl, expression of its dominant negative forms, or expression of an epsin-1 mutant devoid of ubiquitin-interacting motifs all compromise Epo-induced EpoR internalization. Mutated EpoRs mimicking those from PFCP patients cannot bind p85, co-localize with epsin-1, or internalize on Epo stimulation and exhibit Epo hypersensitivity. Similarly, knockdown of Cbl also causes Epo hypersensitivity in primary erythroid progenitors. Restoring p85 binding to PFCP receptors rescues Epo-induced epsin-1 co-localization and EpoR internalization and normalizes Epo hypersensitivity. Our results uncover a novel Cbl/p85/epsin-1 pathway in EpoR endocytosis and show that defects in this pathway contribute to excessive Epo signaling and erythroid hyperproliferation in PFCP.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Endocytosis/drug effects , Erythropoietin/pharmacology , Proto-Oncogene Proteins c-cbl/metabolism , Receptors, Erythropoietin/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cell Line , Cells, Cultured , Class Ia Phosphatidylinositol 3-Kinase/genetics , HEK293 Cells , Humans , Immunoblotting , Mice , Mice, Knockout , Mutation , Polycythemia/congenital , Polycythemia/genetics , Polycythemia/metabolism , Protein Binding/drug effects , Proto-Oncogene Proteins c-cbl/genetics , RNA Interference , Receptors, Erythropoietin/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Ubiquitination/drug effects
6.
PLoS Comput Biol ; 9(4): e1003022, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23592968

ABSTRACT

The Janus Kinase 2 (JAK2) plays essential roles in transmitting signals from multiple cytokine receptors, and constitutive activation of JAK2 results in hematopoietic disorders and oncogenesis. JAK2 kinase activity is negatively regulated by its pseudokinase domain (JH2), where the gain-of-function mutation V617F that causes myeloproliferative neoplasms resides. In the absence of a crystal structure of full-length JAK2, how JH2 inhibits the kinase domain (JH1), and how V617F hyperactivates JAK2 remain elusive. We modeled the JAK2 JH1-JH2 complex structure using a novel informatics-guided protein-protein docking strategy. A detailed JAK2 JH2-mediated auto-inhibition mechanism is proposed, where JH2 traps the activation loop of JH1 in an inactive conformation and blocks the movement of kinase αC helix through critical hydrophobic contacts and extensive electrostatic interactions. These stabilizing interactions are less favorable in JAK2-V617F. Notably, several predicted binding interfacial residues in JH2 were confirmed to hyperactivate JAK2 kinase activity in site-directed mutagenesis and BaF3/EpoR cell transformation studies. Although there may exist other JH2-mediated mechanisms to control JH1, our JH1-JH2 structural model represents a verifiable working hypothesis for further experimental studies to elucidate the role of JH2 in regulating JAK2 in both normal and pathological settings.


Subject(s)
Gene Expression Regulation, Enzymologic , Janus Kinase 2/metabolism , Allosteric Site , Binding Sites , Cell Proliferation , Cluster Analysis , Computational Biology , Crystallography, X-Ray , ErbB Receptors/chemistry , Humans , Models, Theoretical , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutation , Protein Binding , Protein Interaction Mapping , Protein Structure, Tertiary , Software , Static Electricity
7.
Nat Commun ; 14(1): 4101, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491347

ABSTRACT

Hypercholesterolemia and vascular inflammation are key interconnected contributors to the pathogenesis of atherosclerosis. How hypercholesterolemia initiates vascular inflammation is poorly understood. Here we show in male mice that hypercholesterolemia-driven endothelial activation, monocyte recruitment and atherosclerotic lesion formation are promoted by a crosstalk between macrophages and endothelial cells mediated by the cholesterol metabolite 27-hydroxycholesterol (27HC). The pro-atherogenic actions of macrophage-derived 27HC require endothelial estrogen receptor alpha (ERα) and disassociation of the cytoplasmic scaffolding protein septin 11 from ERα, leading to extranuclear ERα- and septin 11-dependent activation of NF-κB. Furthermore, pharmacologic inhibition of cyp27a1, which generates 27HC, affords atheroprotection by reducing endothelial activation and monocyte recruitment. These findings demonstrate cell-to-cell communication by 27HC, and identify a major causal linkage between the hypercholesterolemia and vascular inflammation that partner to promote atherosclerosis. Interventions interrupting this linkage may provide the means to blunt vascular inflammation without impairing host defense to combat the risk of atherosclerotic cardiovascular disease that remains despite lipid-lowering therapies.


Subject(s)
Atherosclerosis , Hypercholesterolemia , Male , Mice , Animals , Estrogen Receptor alpha/metabolism , Hypercholesterolemia/complications , Hypercholesterolemia/metabolism , Endothelial Cells/metabolism , Septins/metabolism , Cholesterol/metabolism , Atherosclerosis/metabolism , Macrophages/metabolism , Signal Transduction , Inflammation/pathology
8.
J Biol Chem ; 286(8): 6449-57, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21183685

ABSTRACT

Ubiquitination is a common mechanism of down-regulation of mitogenic receptors. Here, we show that ubiquitination of the erythropoietin receptor (EpoR) at Lys(256) is necessary and sufficient for efficient Epo-induced receptor internalization, whereas ubiquitination at Lys(428) promotes trafficking of activated receptors to the lysosomes for degradation. Interestingly, EpoR that cannot be ubiquitinated has reduced mitogenic activities and ability to stimulate the STAT5, Ras/MAPK, and PI3K/AKT signaling pathways. We therefore propose that ubiquitination of the EpoR critically controls both receptor down-regulation and downstream signaling.


Subject(s)
Endosomes/metabolism , Receptors, Erythropoietin/metabolism , Signal Transduction/physiology , Ubiquitination/physiology , Animals , Down-Regulation/physiology , Endosomes/genetics , Mice , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Erythropoietin/genetics , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , ras Proteins/genetics , ras Proteins/metabolism
9.
Blood ; 113(21): 5287-97, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19336760

ABSTRACT

Epo-induced endocytosis of EpoR plays important roles in the down-regulation of EpoR signaling and is the primary means that regulates circulating Epo concentrations. Here we show that cell-surface EpoR is internalized via clathrin-mediated endocytosis. Both JAK2 kinase activity and EpoR cytoplasmic tyrosines are important for ligand-dependent EpoR internalization. Phosphorylated Y429, Y431, and Y479 in the EpoR cytoplasmic domain bind p85 subunit of PI3 kinase on Epo stimulation and individually are sufficient to mediate Epo-dependent EpoR internalization. Knockdown of p85alpha and p85beta or expression of their dominant-negative forms, but not inhibition of PI3 kinase activity, dramatically impaired EpoR internalization, indicating that p85alpha and p85beta may recruit proteins in the endocytic machinery on Epo stimulation. Furthermore, mutated EpoRs from primary familial and congenital polycythemia (PFCP) patients lacking the 3 important tyrosines do not bind p85 or internalize on stimulation. Addition of residues encompassing Y429 and Y431 to these truncated receptors restored p85beta binding and Epo sensitivity. Our results identify a novel PI3 kinase activity-independent function of p85 in EpoR internalization and support a model that defects of internalization in truncated EpoRs from PFCP patients contribute to Epo hypersensitivity and prolonged signaling.


Subject(s)
Endocytosis , Janus Kinase 2/physiology , Mutation , Phosphatidylinositol 3-Kinases/physiology , Polycythemia/genetics , Receptors, Erythropoietin/metabolism , Humans , Ligands , Polycythemia/congenital , Protein Subunits/physiology , Receptors, Erythropoietin/genetics , Tyrosine/genetics
10.
Biochem J ; 426(1): 91-8, 2010 Jan 27.
Article in English | MEDLINE | ID: mdl-19929856

ABSTRACT

JAK2 (Janus tyrosine kinase 2) is important for signalling through many cytokine receptors, and a gain-of-function JAK2 mutation in its pseudokinase domain, V617F, has been implicated in Philadelphia chromosome-negative myeloproliferative neoplasms. How this mutation hyperactivates JAK2 is poorly understood. In the present paper we report our findings that the V617F mutation has little effect on the Vmax of JAK2 kinase activity, but lowers the Km value for substrates. Therefore under physiological conditions where the concentration level of substrates is presumably below saturation, JAK2(V617F) exhibits hyperactivation compared with wild-type JAK2. This lower Km of JAK2(V617F) towards substrates requires the JAK2 FERM (4.1/ezrin/radixin/moesin) domain, as deletion of the FERM domain abolished this effect. We also show that, in contrast with its positive role in JAK2(V617F) hyperactivation, the FERM domain in wild-type JAK2 is inhibitory. Deletion or mutations of the FERM domain resulted in increased basal JAK2 kinase activity. The results of the present study provide the biochemical basis for how V617F hyperactivates JAK2, and identifies novel regulating roles of the JAK2 FERM domain to control kinase activity at different activation states.


Subject(s)
Janus Kinase 2/metabolism , Cell Line , Humans , Immunoblotting , Immunoprecipitation , Janus Kinase 2/genetics , Mutation , Protein Structure, Tertiary , Signal Transduction/genetics , Signal Transduction/physiology
11.
J Biol Chem ; 284(39): 26988-98, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19638629

ABSTRACT

JAK2 (Janus kinase 2) is essential for cytokine receptor signaling, and several lines of evidence support a causal role of an activating JAK2 mutation in myeloproliferative disorders. JAK2 activity is autoinhibited by its pseudokinase domain in the basal state, and the inhibition is released by cytokine stimulation; how engagement of the cognate receptor triggers this release is unknown. From a functional screen for gain-of-function JAK2 mutations, we discovered 13 missense mutations, nine in the pseudokinase domain and four in the Src homology 2 (SH2)-pseudokinase domain linker. These mutations identified determinants for autoinhibition and inducible activation in JAK2. Two of the mutants, K539I and N622I, resulted in erythrocytosis in mice. Scanning mutagenesis of the SH2-pseudokinase domain linker indicated that its N-terminal part was essential for interaction of JAK2 with the Epo receptor, whereas certain mutations in the C-terminal region conferred constitutive activation. We further showed that substitutions for Glu(543)-Asp(544) in this linker or Leu(611), Arg(683), or Phe(694) in the hinge proximal region of the pseudokinase domain resulted in activated JAK2 mutants that could not be further stimulated by Epo. These results suggest that the SH2-pseudokinase domain linker acts as a switch that relays cytokine engagement to JAK2 activation by flexing the pseudokinase domain hinge.


Subject(s)
Janus Kinase 2/metabolism , Receptors, Erythropoietin/metabolism , Signal Transduction , src Homology Domains , Amino Acid Sequence , Animals , Binding Sites/genetics , Bone Marrow Cells/metabolism , Bone Marrow Transplantation/methods , Cell Line , Enzyme Activation , Humans , Immunoblotting , Janus Kinase 2/chemistry , Janus Kinase 2/genetics , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Phosphorylation , Polycythemia/genetics , Polycythemia/metabolism , Protein Binding , Protein Structure, Tertiary , Receptors, Erythropoietin/genetics , Sequence Homology, Amino Acid , Transfection
12.
J Am Chem Soc ; 132(1): 371-83, 2010 Jan 13.
Article in English | MEDLINE | ID: mdl-20000429

ABSTRACT

Nakiterpiosin and nakiterpiosinone are two related C-nor-D-homosteroids isolated from the sponge Terpios hoshinota that show promise as anticancer agents. We have previously described the asymmetric synthesis and revision of the relative configuration of nakiterpiosin. We now provide detailed information on the stereochemical analysis that supports our structure revision and the synthesis of the originally proposed and revised nakiterpiosin. In addition, we herein describe a refined approach for the synthesis of nakiterpiosin, the first synthesis of nakiterpiosinone, and preliminary mechanistic studies of nakiterpiosin's action in mammalian cells. Cells treated with nakiterpiosin exhibit compromised formation of the primary cilium, an organelle that functions as an assembly point for components of the Hedgehog signal transduction pathway. We provide evidence that the biological effects exhibited by nakiterpiosin are mechanistically distinct from those of well-established antimitotic agents such as taxol. Nakiterpiosin may be useful as an anticancer agent in those tumors resistant to existing antimitotic agents and those dependent on Hedgehog pathway responses for growth.


Subject(s)
Homosteroids/chemistry , Homosteroids/pharmacology , Animals , DNA/metabolism , HeLa Cells , Homosteroids/chemical synthesis , Humans , Mice , NIH 3T3 Cells , Protein Multimerization/drug effects , Protein Structure, Quaternary , Stereoisomerism , Tubulin/chemistry , Tubulin/metabolism
13.
F1000Res ; 92020.
Article in English | MEDLINE | ID: mdl-32983414

ABSTRACT

More than 50 years of efforts to identify the major cytokine responsible for red blood cell (RBC) production (erythropoiesis) led to the identification of erythropoietin (EPO) in 1977 and its receptor (EPOR) in 1989, followed by three decades of rich scientific discovery. We now know that an elaborate oxygen-sensing mechanism regulates the production of EPO, which in turn promotes the maturation and survival of erythroid progenitors. Engagement of the EPOR by EPO activates three interconnected signaling pathways that drive RBC production via diverse downstream effectors and simultaneously trigger negative feedback loops to suppress signaling activity. Together, the finely tuned mechanisms that drive endogenous EPO production and facilitate its downstream activities have evolved to maintain RBC levels in a narrow physiological range and to respond rapidly to erythropoietic stresses such as hypoxia or blood loss. Examination of these pathways has elucidated the genetics of numerous inherited and acquired disorders associated with deficient or excessive RBC production and generated valuable drugs to treat anemia, including recombinant human EPO and more recently the prolyl hydroxylase inhibitors, which act partly by stimulating endogenous EPO synthesis. Ongoing structure-function studies of the EPOR and its essential partner, tyrosine kinase JAK2, suggest that it may be possible to generate new "designer" drugs that control selected subsets of cytokine receptor activities for therapeutic manipulation of hematopoiesis and treatment of blood cancers.


Subject(s)
Erythrocytes/cytology , Erythropoiesis , Erythropoietin/physiology , Receptors, Erythropoietin/physiology , Humans , Janus Kinase 2/physiology , Signal Transduction
14.
Cell Death Discov ; 6: 107, 2020.
Article in English | MEDLINE | ID: mdl-33101709

ABSTRACT

Mitochondria are vital organelles that coordinate cellular energy homeostasis and have important roles in cell death. Therefore, the removal of damaged or excessive mitochondria is critical for maintaining proper cellular function. The PINK1-Parkin pathway removes acutely damaged mitochondria through a well-characterized mitophagy pathway, but basal mitochondrial turnover occurs via distinct and less well-understood mechanisms. Here we report that the MEKK3-MEK5-ERK5 kinase cascade is required for mitochondrial degradation in the absence of exogenous damage. We demonstrate that genetic or pharmacological inhibition of the MEKK3-MEK5-ERK5 pathway increases mitochondrial content by reducing lysosome-mediated degradation of mitochondria under basal conditions. We show that the MEKK3-MEK5-ERK5 pathway plays a selective role in basal mitochondrial degradation but is not required for non-selective bulk autophagy, damage-induced mitophagy, or restraint of mitochondrial biogenesis. This illuminates the MEKK3-MEK5-ERK5 pathway as a positive regulator of mitochondrial degradation that acts independently of exogenous mitochondrial stressors.

15.
EBioMedicine ; 39: 145-158, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30528456

ABSTRACT

BACKGROUND: Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/ß-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear. METHODS: We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression. ATAC-seq and transcriptome profiling were deployed to understand the cellular consequences of disrupting a WNT signaling in leukemic initiating cells (LICs). FINDINGS: We identified Six1 to be a WNT-controlled target gene in MLL-AF9-transformed leukemic initiating cells (LICs). MLL-AF9 alters the accessibility of Six1 DNA to the transcriptional effector TCF7L2, a transducer of WNT/ß-catenin gene expression changes. Disruption of WNT/SIX1 signaling using inhibitors of the Wnt signaling delays the development of AML. INTERPRETATION: By rendering TCF/LEF-binding elements controlling Six1 accessible to TCF7L2, MLL-AF9 promotes WNT/ß-catenin-dependent growth of LICs. Small molecules disrupting WNT/ß-catenin signaling block Six1 expression thereby disrupting leukemia driven by MLL fusion proteins.


Subject(s)
Homeodomain Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Small Molecule Libraries/pharmacology , Wnt Signaling Pathway/drug effects , Animals , HEK293 Cells , HL-60 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Neoplasm Transplantation , Neoplastic Stem Cells/metabolism , Receptors, G-Protein-Coupled/genetics , THP-1 Cells , Transcription Factor 7-Like 2 Protein/metabolism
16.
Article in English | MEDLINE | ID: mdl-28507533

ABSTRACT

Type I and II cytokine receptors are cell surface sensors that bind cytokines in the extracellular environment and initiate intracellular signaling to control processes such as hematopoiesis, immune function, and cellular growth and development. One key mechanism that regulates signaling from cytokine receptors is through receptor endocytosis. In this mini-review, we describe recent advances in endocytic regulations of cytokine receptors, focusing on new paradigms by which PI3K controls receptor endocytosis through both kinase activity-dependent and -independent mechanisms. These advances underscore the notion that the p85 regulatory subunit of PI3K has functions beyond regulating PI3K kinase activity, and that PI3K plays both positive and negative roles in receptor signaling. On the one hand, the PI3K/Akt pathway controls various aspects downstream of cytokine receptors. On the other hand, it stimulates receptor endocytosis and downregulation, thus contributing to signaling attenuation.

17.
Blood Adv ; 1(18): 1358-1367, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28868519

ABSTRACT

The NELF complex is a metazoan-specific factor essential for establishing transcription pausing. Although NELF has been implicated in cell fate regulation, the cellular regulation of NELF and its intrinsic role in specific lineage differentiation remains largely unknown. Using mammalian hematopoietic differentiation as a model system, here we identified a dynamic change of NELF-mediated transcription pausing as a novel mechanism regulating hematopoietic differentiation. We found a sharp decrease of NELF protein abundance upon granulocytic differentiation and a subsequent genome-wide reduction of transcription pausing. This loss of pausing coincides with activation of granulocyte-affiliated genes and diminished expression of progenitor markers. Functional studies revealed that sustained expression of NELF inhibits granulocytic differentiation, whereas NELF depletion in progenitor cells leads to premature differentiation towards the granulocytic lineage. Our results thus uncover a previously unrecognized regulation of transcription pausing by modulating NELF protein abundance to control cellular differentiation.

18.
Nat Med ; 23(1): 79-90, 2017 01.
Article in English | MEDLINE | ID: mdl-27941793

ABSTRACT

New therapeutic approaches are needed to treat leukemia effectively. Dietary restriction regimens, including fasting, have been considered for the prevention and treatment of certain solid tumor types. However, whether and how dietary restriction affects hematopoietic malignancies is unknown. Here we report that fasting alone robustly inhibits the initiation and reverses the leukemic progression of both B cell and T cell acute lymphoblastic leukemia (B-ALL and T-ALL, respectively), but not acute myeloid leukemia (AML), in mouse models of these tumors. Mechanistically, we found that attenuated leptin-receptor (LEPR) expression is essential for the development and maintenance of ALL, and that fasting inhibits ALL development by upregulation of LEPR and its downstream signaling through the protein PR/SET domain 1 (PRDM1). The expression of LEPR signaling-related genes correlated with the prognosis of pediatric patients with pre-B-ALL, and fasting effectively inhibited B-ALL growth in a human xenograft model. Our results indicate that the effects of fasting on tumor growth are cancer-type dependent, and they suggest new avenues for the development of treatment strategies for leukemia.


Subject(s)
Fasting/metabolism , Leukemia, Myeloid, Acute/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Leptin/metabolism , Transcription Factors/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Computer Simulation , Disease Models, Animal , Flow Cytometry , Humans , Mice , Mice, SCID , Neoplasm Transplantation , Positive Regulatory Domain I-Binding Factor 1 , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Real-Time Polymerase Chain Reaction , Receptors, Leptin/genetics , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
19.
Integr Biol (Camb) ; 5(10): 1217-28, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23970166

ABSTRACT

Understanding of principles governing selective and sensitive cancer targeting is critical for development of chemicals for cancer diagnostics and treatment. We determined the underlying mechanisms of how a novel fluorescent small organic molecule, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC), selectively labels cancer cells but not normal cells. We show that BMVC is retained in the lysosomes of normal cells. In cancer cells, BMVC escapes lysosomal retention and localizes to the mitochondria or to the nucleus, where DNA-binding dramatically increases BMVC fluorescence intensity, allowing it to light up only cancer cells. Structure-function analyses of BMVC derivatives show that hydrogen-bonding capacity is a key determinant of lysosomal retention in normal cells, whereas lipophilicity directs these derivatives to the mitochondria or the nucleus in cancer cells. In addition, drug-resistant cancer cells preferentially retain BMVC in their lysosomes compared to drug-sensitive cancer cells, and BMVC can be released from drug-resistant lysosomes using lysosomotropic agents. Our results further our understanding of how properties of cellular organelles differ between normal and cancer cells, which can be exploited for diagnostic and/or therapeutic use. We also provide physiochemical design principles for selective targeting of small molecules to different organelles. Moreover, our results suggest that agents which can increase lysosomal membrane permeability may re-sensitize drug-resistant cancer cells to chemotherapeutic agents.


Subject(s)
Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacokinetics , Molecular Probe Techniques , Molecular Probes/chemical synthesis , Molecular Probes/pharmacokinetics , Molecular Targeted Therapy/methods , Neoplasms, Experimental/metabolism , Cell Line, Tumor , Contrast Media/chemical synthesis , Drug Design , Humans , Neoplasms, Experimental/diagnosis , Neoplasms, Experimental/drug therapy , Reproducibility of Results , Sensitivity and Specificity
20.
Sci Signal ; 6(297): ra90, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24129700

ABSTRACT

A challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells. We used cell-based screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA (miRNA) libraries. With this strategy, we matched proteins and miRNAs with diverse biological processes and also identified putative protein targets and mechanisms of action for several previously undescribed marine-derived natural products. We confirmed mechanistic relationships for selected siRNAs, miRNAs, and compounds with functional roles in autophagy, chemotaxis mediated by discoidin domain receptor 2, or activation of the kinase AKT. Thus, this approach may be an effective method for screening new drugs while simultaneously identifying their targets.


Subject(s)
Biological Products/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Transcriptome/drug effects , Animals , Autophagy/drug effects , Autophagy/genetics , Bacteria/chemistry , Bacteria/classification , Biological Products/chemistry , Biological Products/isolation & purification , Cell Line, Tumor , Cells, Cultured , Cluster Analysis , Computational Biology/methods , Drug Evaluation, Preclinical/methods , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/genetics , HCT116 Cells , Humans , Invertebrates/chemistry , MCF-7 Cells , Marine Biology , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Molecular Structure , Oligonucleotide Array Sequence Analysis , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL