Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Prep Biochem Biotechnol ; : 1-10, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349751

ABSTRACT

Saccharomyces cerevisiae cannot assimilate xylose, second to glucose derived from lignocellulosic biomass. Here, the engineered S. cerevisiae strains INVSc-XI and INVSc-XI/XT were constructed using xylA and Xltr1p to co-utilize xylose and glucose, achieving economic viability and sustainable production of fuels. The xylose utilization rate of INVSc-XI/XT was 2.3-fold higher than that of INVSc-XI, indicating that overexpressing Xltr1p could further enhance xylose utilization. In mixed sugar media, a small amount of glucose enhanced the consumption of xylose by INVSc-XI/XT. Transcriptome analysis showed that glucose increased the upregulation of acetate of coenzyme A synthetase (ACS), alcohol dehydrogenase (ADH), and transketolase (TKL) gene expression in INVSc-XI/XT, further promoting xylose utilization and ethanol yield. The highest ethanol titer of 2.91 g/L with a yield of 0.29 g/g at 96 h by INVSc-XI/XT was 56.9% and 63.0% of the theoretical ethanol yield from glucose and xylose, respectively. These results showed overexpression of xylA and Xltr1p is a promising strategy for improving xylose and glucose conversion to ethanol. Although the ability of strain INVSc-XI/XT to produce ethanol was not very satisfactory, glucose was discovered to influence xylose utilization in strain INVSc-XI/XT. Altering the glucose concentration is a promising strategy to improve the xylose and glucose co-utilization.


INVSc-XI and INVSc-XI/XT strains were newly constructed to utilize xylose and glucose.XylA, in combination with xylose transporter Xltr1p, enhances xylose consumption.A small amount of glucose enhanced xylose utilization in INVSc-XI/XT strain.The expression of ACS, ADH, and TKL genes is upregulated in the media containing mixed sugars.The highest ethanol yield of 0.29 g/g was produced in a 2-L scale-up fermenter.

2.
Nature ; 531(7594): 357-61, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26983540

ABSTRACT

Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.


Subject(s)
Air Pollution/analysis , Atmosphere/chemistry , Greenhouse Effect , Aerosols/analysis , Aerosols/chemistry , Carbon Dioxide/analysis , China , Fossil Fuels , Methane/analysis , Soot/analysis , Sulfates/analysis , Sulfur Dioxide/analysis , Uncertainty
3.
Nature ; 526(7571): 104-7, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26416746

ABSTRACT

Earlier spring leaf unfolding is a frequently observed response of plants to climate warming. Many deciduous tree species require chilling for dormancy release, and warming-related reductions in chilling may counteract the advance of leaf unfolding in response to warming. Empirical evidence for this, however, is limited to saplings or twigs in climate-controlled chambers. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, here we show that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance of leaf unfolding per °C warming) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 ± 1.8 days °C(-1) during 1980-1994 to 2.3 ± 1.6 days °C(-1) during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also have a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates occur too early in the season. Our results provide empirical evidence for a declining ST, but also suggest that the predicted strong winter warming in the future may further reduce ST and therefore result in a slowdown in the advance of tree spring phenology.


Subject(s)
Global Warming , Plant Leaves/growth & development , Seasons , Trees/growth & development , Cold Temperature , Europe , Models, Biological , Photoperiod , Time Factors
4.
Ecotoxicol Environ Saf ; 225: 112762, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34530263

ABSTRACT

A diet high in sodium chloride (NaCl) can affect renal function damage and increase urinary calcium excretion, leading to bone loss. in renal tubules, Na-Cl co-transporter (NCC) and chloride channel 5 (CLC-5) are involved in regulating urinary calcium excretion. In addition, some cytokines, such as Bone morphogenetic protein 7 (BMP-7) and 1α-hydroxylase, are synthesized by renal tubules, which target on bone and play important roles on bone metabolism. However, the specific mechanisms between NaCl and these ion channels or cytokines still need investigations from many aspects. This study, in culture normal rat renal tubular epithelial NRK-52E cells, showed that high concentrations of NaCl significantly inhibited the cell viability and increased the cell apoptosis. High concentration of NaCl reduce bone mineral density (BMD), as demonstrated by the significantly increased mRNA and protein levels of NCC and osteopontin (OPN), but decreased the levels of CLC-5, BMP-7, and 1α-hydroxylase. In addition, we found that ovariectomized (OVX) rats on a high-salt diet for 12 weeks had altered levels of these indices in the renal cortices. Moreover, the BMD in fourth and fifth lumbar vertebra (LV4 and 5) and femurs were significantly decreased and bone microstructure was destroyed of these rats. We also demonstrated that high concentration of NaCl enhanced the inhibition of these cytokines which is beneficial to increase BMD, induced by modulating ion channels NCC and CLC-5. In conclusion, our results indicate that high concentration of NaCl reduce BMD by regulating ion channels NCC and CLC-5.


Subject(s)
Chlorides , Sodium Chloride , Animals , Bone Morphogenetic Protein 7 , Chloride Channels , Chlorides/toxicity , Mixed Function Oxygenases , Rats
5.
Proc Natl Acad Sci U S A ; 114(35): 9326-9331, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28811375

ABSTRACT

Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.


Subject(s)
Climate Change , Crops, Agricultural/growth & development , Glycine max/growth & development , Hot Temperature , Models, Biological , Poaceae/growth & development
6.
Proc Natl Acad Sci U S A ; 113(24): 6617-22, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27247397

ABSTRACT

Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

7.
Glob Chang Biol ; 24(8): 3546-3559, 2018 08.
Article in English | MEDLINE | ID: mdl-29729065

ABSTRACT

Whether and how the timing of extreme events affects the direction and magnitude of legacy effects on tree growth is poorly understood. In this study, we use a global database of Ring-Width Index (RWI) from 2,500 sites to examine the impact and legacy effects (the departure of observed RWI from expected RWI) of extreme drought events during 1948-2008, with a particular focus on the influence of drought timing. We assessed the recovery of stem radial growth in the years following severe drought events with separate groupings designed to characterize the timing of the drought. We found that legacies from extreme droughts during the dry season (DS droughts) lasted longer and had larger impacts in each of the 3 years post drought than those from extreme droughts during the wet season (WS droughts). At the global scale, the average integrated legacy from DS droughts (0.18) was about nine times that from WS droughts (0.02). Site-level comparisons also suggest stronger negative impacts or weaker positive impacts of DS droughts on tree growth than WS droughts. Our results, therefore, highlight that the timing of drought is a crucial factor determining drought impacts on tree recovery. Further increases in baseline aridity could therefore exacerbate the impact of punctuated droughts on terrestrial ecosystems.


Subject(s)
Droughts , Trees/growth & development , Ecosystem , Plant Stems , Seasons , Time Factors
8.
Bioorg Med Chem Lett ; 28(4): 677-683, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29395978

ABSTRACT

Using matrine (1) as the lead compound, a series of new 14-(N-substituted-2-pyrrolemethylene) matrine and 14-(N-substituted-indolemethylene) matrine derivatives was designed and synthesized for their potential application as anticancer agents. The structure of these compounds was characterized by 1H NMR, 13C NMR and ESI-MS spectral analyses. The target compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (SMMC-7721, A549 and CNE2). The results revealed that compound A6 and B21 displayed the most significant anticancer activity against three cancer cell lines with IC50 values in range of 3.42-8.05 µM, which showed better activity than the parent compound (Matrine) and positive control Cisplatin. Furthermore, the Annexin V-FITC/PI dual staining assay revealed that compound A6 and B21 could significantly induce the apoptosis of SMMC-7721 and CNE2 cells in a dose-dependent manner. The cell cycle analysis also revealed that compound A6 could cause cell cycle arrest of SMMC-7721 and CNE2 cells at G2/M phase.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Quinolizines/pharmacology , Alkaloids/chemical synthesis , Alkaloids/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Drug Design , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Molecular Structure , Quinolizines/chemical synthesis , Quinolizines/chemistry , Structure-Activity Relationship , Matrines
9.
Proc Natl Acad Sci U S A ; 112(30): 9299-304, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26170316

ABSTRACT

In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.


Subject(s)
Climate Change , Plant Transpiration , Agriculture , Asia , Climate , Computer Simulation , Ecology , Geography , Models, Statistical , Models, Theoretical , Poaceae , Temperature , Tibet , Water/chemistry
10.
Glob Chang Biol ; 22(2): 644-55, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26340580

ABSTRACT

Autumn phenology plays a critical role in regulating climate-biosphere interactions. However, the climatic drivers of autumn phenology remain unclear. In this study, we applied four methods to estimate the date of the end of the growing season (EOS) across China's temperate biomes based on a 30-year normalized difference vegetation index (NDVI) dataset from Global Inventory Modeling and Mapping Studies (GIMMS). We investigated the relationships of EOS with temperature, precipitation sum, and insolation sum over the preseason periods by computing temporal partial correlation coefficients. The results showed that the EOS date was delayed in temperate China by an average rate at 0.12 ± 0.01 days per year over the time period of 1982-2011. EOS of dry grassland in Inner Mongolia was advanced. Temporal trends of EOS determined across the four methods were similar in sign, but different in magnitude. Consistent with previous studies, we observed positive correlations between temperature and EOS. Interestingly, the sum of precipitation and insolation during the preseason was also associated with EOS, but their effects were biome dependent. For the forest biomes, except for evergreen needle-leaf forests, the EOS dates were positively associated with insolation sum over the preseason, whereas for dry grassland, the precipitation over the preseason was more dominant. Our results confirmed the importance of temperature on phenological processes in autumn, and further suggested that both precipitation and insolation should be considered to improve the performance of autumn phenology models.


Subject(s)
Models, Theoretical , Plant Development , Seasons , China , Climate , Rain , Sunlight , Temperature
11.
Glob Chang Biol ; 22(11): 3702-3711, 2016 11.
Article in English | MEDLINE | ID: mdl-27061925

ABSTRACT

The timing of the end of the vegetation growing season (EOS) plays a key role in terrestrial ecosystem carbon and nutrient cycles. Autumn phenology is, however, still poorly understood, and previous studies generally focused on few species or were very limited in scale. In this study, we applied four methods to extract EOS dates from NDVI records between 1982 and 2011 for the Northern Hemisphere, and determined the temporal correlations between EOS and environmental factors (i.e., temperature, precipitation and insolation), as well as the correlation between spring and autumn phenology, using partial correlation analyses. Overall, we observed a trend toward later EOS in ~70% of the pixels in Northern Hemisphere, with a mean rate of 0.18 ± 0.38 days yr-1 . Warming preseason temperature was positively associated with the rate of EOS in most of our study area, except for arid/semi-arid regions, where the precipitation sum played a dominant positive role. Interestingly, increased preseason insolation sum might also lead to a later date of EOS. In addition to the climatic effects on EOS, we found an influence of spring vegetation green-up dates on EOS, albeit biome dependent. Our study, therefore, suggests that both environmental factors and spring phenology should be included in the modeling of EOS to improve the predictions of autumn phenology as well as our understanding of the global carbon and nutrient balances.


Subject(s)
Climate Change , Plant Development , Temperature , Desert Climate , Ecosystem , Seasons
12.
Glob Chang Biol ; 22(6): 2165-77, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26663766

ABSTRACT

Ecosystem water-use efficiency (EWUE) is an indicator of carbon-water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long-term trend in annual EWUE over many regions and is largely attributed to the physiological effects of rising CO2 . The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982-2008. The seasonal cycle for two variants of EWUE, water-use efficiency (WUE, GPP/ET), and transpiration-based WUE (WUEt , the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process-based models and satellite-based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite-based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite-based products. Trend analysis, based on process-model factorial simulations separating effects of climate, CO2 , and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid- and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m(-2)  mm(-1)  yr(-1) for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2, and NDEP.


Subject(s)
Climate Change , Ecosystem , Seasons , Water Cycle , Carbon/analysis , Carbon Cycle , Carbon Dioxide/analysis , Models, Theoretical , Nitrogen/analysis , Plant Transpiration , Water
13.
Glob Chang Biol ; 21(6): 2366-78, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25612078

ABSTRACT

Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem-scale water-use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data-driven models derived from satellite observations and process-oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m(-2)  mm(-1)  yr(-1) under the single effect of rising CO2 ('CO2 '), climate change ('CLIM') and nitrogen deposition ('NDEP'), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE-CO2 shows global increases, (ii) EWUE-CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE-NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data-driven MTE model, however, shows a slight decline of EWUE during the same period (-0.0005 g C m(-2)  mm(-1)  yr(-1) ), which differs from process-model (0.0064 g C m(-2)  mm(-1)  yr(-1) ) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO2 reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data-driven model and the process-oriented models across different ecosystems. Change in water-use efficiency defined from transpiration-based WUEt (GPP/TR) and inherent water-use efficiency (IWUEt , GPP×VPD/TR) in response to rising CO2 , climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon-water interactions over terrestrial ecosystems under global change.


Subject(s)
Carbon Dioxide/metabolism , Ecosystem , Water/metabolism , Carbon Cycle , Climate Change , Models, Theoretical , Nitrogen/metabolism , Photosynthesis , Plant Transpiration , Plants/metabolism
14.
Glob Chang Biol ; 21(4): 1601-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25369401

ABSTRACT

The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosystem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing-season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr(-1), ranging from 0.0035 yr(-1) to 0.0127 yr(-1)), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai-Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.


Subject(s)
Carbon Dioxide/analysis , Climate Change , Conservation of Natural Resources , Environmental Monitoring , Nitrogen/analysis , China , Forests , Models, Theoretical , Plant Development , Remote Sensing Technology , Spacecraft , Temperature
15.
J Colloid Interface Sci ; 613: 575-586, 2022 May.
Article in English | MEDLINE | ID: mdl-35065433

ABSTRACT

Developing the heterogeneous photocatalysts with high performance for carbon dioxide (CO2) conversion to solar fuels is remarkably significant for reducing the atmospheric CO2 level and achieving the target of carbon neutrality through the artificial photosynthesis strategies. However, it remains a great challenge for most of the photocatalysts to achieve the CO2-to-hydrocarbon conversion via a multi-proton coupled multi-electron reduction process. In this work, the cadmium-sulfide/gold/graphitic-carbon-nitride (CdS/Au/g-C3N4) heterojunction photocatalyst with sandwich nanostructures is designedly constructed by a selective two-step photodeposition process. The better separation of photogenerated electrons and holes in CdS/Au/g-C3N4 heterojunction creates the higher density of surface photogenerated electron, dynamically accelerating the multi-electron reduction of CO2. Moreover, the selective photodeposition of CdS on Au/g-C3N4 affords sufficient electron-enriched Sδ- active sites which are more beneficial to the provision of H adatoms. These advantages jointly improve the photocatalytic CO2 conversion to methane (CH4) via a multi-proton coupled multi-electron reduction process. The CH4 yield rate on CdS/Au/g-C3N4 photocatalyst is about twice that of CdS/g-C3N4, while g-C3N4 and Au/g-C3N4 only produce CO. The total electron utilization for CO2 reduction on CdS/Au/g-C3N4 photocatalyst is 6.9 times that of g-C3N4. Furthermore, the CdS/Au/g-C3N4 photocatalyst exhibits high stability in consecutive cycles of CO2 reduction reaction. The photocatalytic mechanism is proposed on the basis of in situ spectrographic analyses together with other detailed characterizations.

16.
Bioresour Technol ; 346: 126644, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34973402

ABSTRACT

This short communication analyzed the effects of lignin-derived phenolic acid compounds on cellulase. Vanillic acid, syringic acid, ferulic acid, and isovanillic acid improved cellulase specific activity and saccharification efficiency. In the enzymatic hydrolysis process, the promotion effect of phenolic acid was concentration-dependent. The effect of low concentration of phenolic acids (less than 5 mM) was negligible. After pre-incubating 1 g cellulase with 5 mmol phenolic acid, FPase-specific activity, CMCase-specific activity, and pNPGase-specific activity increased by 57.06%, 136.79%, and 110.61%, respectively. After digestion with pre-incubated cellulase, the saccharification efficiency of phosphoric acid-swollen cellulose increased by 45.13%. Pre-incubation with phenolic acid improved the saccharification efficiency of cellulase. It might be helpful to enhance the comprehensive utilization capacity of lignin-derived compounds.


Subject(s)
Cellulase , Cellulose , Hydrolysis , Hydroxybenzoates/pharmacology , Lignin
17.
ACS Nano ; 16(2): 2306-2318, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35137588

ABSTRACT

Photocatalytic CO2 conversion into a high-value-added C2 product is a highly challenging task because of insufficient electron deliverability and sluggish C-C coupling kinetics. Engineering catalytic interfaces in photocatalysts provides a promising approach to manipulate photoinduced charge carriers and create multiple catalytic sites for boosting the generation of C2 product from CO2 reduction. Herein, a Cuδ+/CeO2-TiO2 photocatalyst that contains atomically dispersed Cuδ+ sites anchored on the CeO2-TiO2 heterostructures consisting of highly dispersed CeO2 nanoparticles on porous TiO2 is designedly constructed by the pyrolytic transformation of a Cu2+-Ce3+/MIL-125-NH2 precursor. In the designed photocatalyst, TiO2 acts as a light-harvesting material for generating electron-hole pairs that are efficiently separated by CeO2-TiO2 interfaces, and the Cu-Ce dual active sites synergistically facilitate the generation and dimerization of *CO intermediates, thus lowering the energy barrier of C-C coupling. As a consequence, the Cuδ+/CeO2-TiO2 photocatalyst exhibits a production rate of 4.51 µmol-1·gcat-1·h-1 and 73.9% selectivity in terms of electron utilization for CO2 to C2H4 conversion under simulated sunlight, with H2O as hydrogen source and hole scavenger. The photocatalytic mechanism is revealed by operando spectroscopic methods as well as theoretical calculations. This study displays the rational construction of heterogeneous photocatalysts for boosting CO2 conversion and emphasizes the synergistic effect of multiple active sites in enhancing the selectivity of C2 product.

18.
J Colloid Interface Sci ; 628(Pt B): 129-140, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35987152

ABSTRACT

Artificial photosynthesis has become one of the most attractive strategies for lowering atmospheric carbon dioxide (CO2) level and achieving the carbon balance; whereas, the fast electron-hole recombination and sluggish charge transfer in photocatalysts are themain stumbling blocks to the applications. Constructing semiconductor nano-heterostructures provides a promising strategy to accelerate the separation and transfer of photoinduced charge carriers for promoting the multielectron CO2 reduction reaction. Herein, a CdS/g-C3N4/α-Fe2O3 three-component photocatalyst consisting of type II and Z-scheme tandem heterojunctions is skillfully fabricated via the solvothermal synthesis followed with photoinduced deposition. The CdS/g-C3N4/α-Fe2O3 tandem-heterojunction photocatalyst exhibits superior performance toward the conversion of CO2 to fuels (CO and CH4), compared with the single- and binary-component systems, owing to the favorable energy-level alignment, accelerated charge separation, facilitated water dissociation and sufficient reactive-hydrogen provision. The total consumed electron number of CdS/g-C3N4/α-Fe2O3 catalyst for CO2 reduction is about 10.5 times that of pure g-C3N4. The photocatalytic mechanism is elucidated according to detailed characterizations and in-situ spectroscopy analyses. This work sheds light on the rational construction of heterojunction photocatalysts to promote the conversion of CO2 to solar fuels, without using any sacrifice reagent or noble-metal cocatalysts.

19.
Front Microbiol ; 13: 901690, 2022.
Article in English | MEDLINE | ID: mdl-35633711

ABSTRACT

Biotransformation has gained increasing attention due to its being an eco-friendly way for the production of value-added chemicals. The present study aimed to assess the potential of Bacillus pumilus ZB1 on guaiacyl lignin monomers biotransformation for the production of vanillin. Consequently, isoeugenol, eugenol, and vanillyl alcohol could be transformed into vanillin by B. pumilus ZB1. Based on the structural alteration of masson pine and the increase of total phenol content in the supernatant, B. pumilus ZB1 exhibited potential in lignin depolymerization and valorization using masson pine as the substrate. As the precursors of vanillin, 61.1% of isoeugenol and eugenol in pyrolyzed bio-oil derived from masson pine could be transformed into vanillin by B. pumilus ZB1. Four monooxygenases with high specific activity were identified that were involved in the transformation process. Thus, B. pumilus ZB1 could emerge as a candidate in the biosynthesis of vanillin by using wide guaiacyl precursors as the substrates.

SELECTION OF CITATIONS
SEARCH DETAIL