Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant Mol Biol ; 113(6): 415-430, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37566350

ABSTRACT

Cadmium (Cd) is a non-essential heavy metal, assimilated in plant tissue with other nutrients, disturbing the ions' homeostasis in plants. The plant develops different mechanisms to tolerate the hazardous environmental effects of Cd. Recently studies found different miRNAs that are involved in Cd stress. In the current study, miR397 mutant lines were constructed to explore the molecular mechanisms of miR397 underlying Cd tolerance. Compared with the genetically modified line of overexpressed miR397 (artificial miR397, amiR397), the lines of downregulated miR397 (Short Tandem Target Mimic miR397, STTM miR397) showed more substantial Cd tolerance with higher chlorophyll a & b, carotenoid and lignin content. ICP-OES revealed higher cell wall Cd and low total Cd levels in STTM miR397 than in the wild-type and amiR397 plants.Further, the STTM plants produced fewer reactive oxygen species (ROS) and lower activity of antioxidants enzymes (e.g., catalase [CAT], malondialdehyde [MDA]) compared with amiR397 and wild-type plants after stress, indicating that silencing the expression of miR397 can reduce oxidative damage. In addition, the different family transporters' gene expression was much higher in the amiR397 plants than in the wild type and STTM miRNA397. Our results suggest that miR397 plays a role in Cd tolerance in Arabidopsis thaliana. Overexpression of miR397 could decrease Cd tolerance in plants by regulating the expression of LAC 2/4/17, changing the lignin content, which may play an important role in inducing different stress-tolerant mechanisms and protecting the cell from a hazardous condition. This study provides a basis to elucidate the functions of miR397 and the Cd stress tolerance mechanism in Arabidopsis thaliana.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Cadmium/metabolism , Lignin/metabolism , Chlorophyll A/metabolism , Antioxidants/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant
2.
Hortic Res ; 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35184182

ABSTRACT

Brassica parachinensis is a popular leafy vegetable. It is able to accumulate high concentration of Cd, however, the molecular mechanism of Cd accumulation is unknown. This study investigated the function and regulatory mechanism of the Cd-responsive metal ion transporter gene BrpHMA2. BrpHMA2 was induced by Cd stress and specifically expressed in vascular tissues, and the protein was localized in the plasma membrane. Heterologous expression of BrpHMA2 enhanced Cd accumulation and Cd sensitivity in transgenic Arabidopsis and yeast. After Cd stress, the transcriptional factors BrpNAC895 and BrpABI449, which may recognize the ABREs in the BrpHMA2 promoter, were also differentially expressed. The transcriptional regulation of BrpHMA2 was further investigated using ChIP-qPCR, EMSA and LUC reporter activity analysis employing the transient expression system of Brassica parachinensis protoplasts and tobacco leaves and the E. coli expression system. By binding to the promoter, BrpNAC895 induced the transcription of BrpHMA2. BrpABI449 might bind to the BrpHMA2 promoter or interact with BrpNAC895 to interfere with the action of BrpNAC895. The findings suggest that BrpHMA2 is a membrane-based afflux-type Cd transporter involved in the Cd2+ uptake and long-distance transport in plants. BrpNAC895 and BrpABI449, which function as the transcription activator and repressor respectively, coregulate BrpHMA2 expression.

3.
Funct Plant Biol ; 48(4): 361-370, 2021 03.
Article in English | MEDLINE | ID: mdl-33333000

ABSTRACT

MicroRNAs (miRNAs) are noncoding, small RNAs of 20-24 nucleotides (nt) and function critically at the post-transcriptional level to regulate gene expression through cleaving mRNA targets or interfering with translation of the target mRNAs. They are broadly involved in many biological processes in plants. The miR397 family in plants contains several conserved members either in 21-nt or in 22-nt that mainly target the laccase (LAC) genes functioning in lignin synthesis and are involved in the development of plants under various conditions. Recent findings showed that miR397b in Arabidopsis could also target to Casein Kinase II Subunit Beta 3 (CKB3) and mediate circadian regulation and plant flowering. This review aims to summarise recent updates on miR397 and provides the available basis for understanding the functional mechanisms of miR397 in plant growth and development regulation and in response to external adverse stimulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Laccase/genetics , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL