Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Microbiol Spectr ; : e0117224, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162512

ABSTRACT

Aspergillus fumigatus is the predominant pathogen responsible for aspergillosis infections, with emerging drug-resistant strains complicating treatment strategies. The role of mitochondrial functionality in fungal resistance to antifungal agents is well-documented yet not fully understood. In this study, the mitochondrial protein Bcs1A, a homolog of yeast Bcs1, was found to regulate colony growth, ion homeostasis, and the response to antifungal drugs in A. fumigatus. Microscopic observations revealed substantial colocalization of Bcs1A-GFP fusion protein fluorescence with mitochondria. Bcs1A deletion compromised colony growth and the utilization of non-fermentable carbon sources, alongside causing abnormal mitochondrial membrane potential and reduced reactive oxygen species production. These findings underscore Bcs1A's vital role in maintaining mitochondrial integrity. Phenotypic analysis and determinations of minimum inhibitory concentrations indicated that the Δbcs1A mutant was more resistant to various antifungal agents, such as azoles, terbinafine, and simvastatin, compared to wild-type strain. RNA sequencing and RT-qPCR analysis highlighted an upregulation of multiple efflux pumps in the Δbcs1A mutant. Furthermore, loss of the principal drug efflux pump, mdr1, decreased azole tolerance in the Δbcs1A mutant, suggesting that Bcs1A's modulated of azoles response via efflux pump expression. Collectively, these results establish Bcs1A as essential for growth and antifungal drug responsiveness in A. fumigatus mediated through mitochondrial regulation.IMPORTANCEDrug resistance presents a formidable obstacle in the clinical management of aspergillosis. Mitochondria are integral to various biochemical pathways, including those involved in fungi drug response, making mitochondrial proteins promising therapeutic targets for drug therapy. This study confirms that Bcs1A, a mitochondrial respiratory chain protein, is indispensable for mitochondrial functionality and multidrug tolerance in Aspergillus fumigatus. Mutation of Bcs1A not only leads to a series of drug efflux pumps upregulated but also shows that loss of the primary efflux pump, mdr1, partial reduction in drug tolerance in the Bcs1A mutant, highlighting that Bcs1A's significant influence on mitochondria-mediated drug resistance.

2.
J Cosmet Dermatol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803042

ABSTRACT

BACKGROUND: Patients with hypertrophic scarring tend to experience recurrence after treatment, which often occurs in areas of the body with high skin tension. AIMS: To evaluate better treatments aimed at reducing the risk of scar recurrence in areas of high skin tension. METHODS: Patients were randomly divided into the following three treatment groups: botulinum toxin type A (BTA) via dual-plane micro-drop injections, triamcinolone acetonide (TAC) suspension, and CO2 via fractional CO2 laser. Interventions were implemented in all three groups once a month for three consecutive sessions. After the final treatment, scarring was evaluated at 1, 3, 6, 12, and 24 months using the Patient and Observer Scar Assessment Scale (POSAS). RESULTS: The 3-month POSAS score for each scar indicator in the treatment groups was significantly lower than that in the preoperative groups (p < 0.001). The scar score in the TAC group decreased at 3 months and increased thereafter. For other groups, the scar score continually decreased at all time points according to the Patient Scar Assessment Scale. Based on the Observer Scar Assessment Scale, the scar score continuously decreased at all time points in the BTA group; in the TAC group, it decreased at 1 month and increased thereafter; and in the CO2 group, the scar score decreased at 3 months and subsequently stabilized. CONCLUSIONS: All three treatment methods were effective. However, the BTA group experienced a reduced risk of scar recurrence and maintained long-term treatment effects.

3.
Tissue Eng Regen Med ; 20(6): 879-892, 2023 10.
Article in English | MEDLINE | ID: mdl-37580648

ABSTRACT

BACKGROUND: The formation of an inhibitory inflammatory microenvironment after spinal cord injury (SCI) remains a great challenge for nerve regeneration. The poor local microenvironment exacerbates nerve cell death; therefore, the reconstruction of a favorable microenvironment through small-molecule drugs is a promising strategy for promoting nerve regeneration. METHODS: In the present study, we synthesized curcumin-loaded micelle nanoparticles (Cur-NPs) to increase curcumin bioavailability and analyzed the physical and chemical properties of Cur-NPs by characterization experiments. We established an in vivo SCI model in rats and examined the ability of hind limb motor recovery using Basso-Beattie-Bresnahan scoring and hind limb trajectory assays. We also analyzed neural regeneration after SCI using immunofluorescence staining. RESULTS: The nanoparticles achieved the intelligent responsive release of curcumin while improving curcumin bioavailability. Most importantly, the released curcumin attenuated local inflammation by modulating the polarization of macrophages from an M1 pro-inflammatory phenotype to an M2 anti-inflammatory phenotype. M2-type macrophages can promote cell differentiation, proliferation, matrix secretion, and reorganization by secreting or expressing pro-repair cytokines to reduce the inflammatory response. The enhanced inflammatory microenvironment supported neuronal regeneration, nerve remyelination, and reduced scar formation. These effects facilitated functional repair in rats, mainly in the form of improved hindlimb movements. CONCLUSION: Here, we synthesized pH/temperature dual-sensitive Cur-NPs. While improving the bioavailability of the drug, they were also able to achieve a smart responsive release in the inflammatory microenvironment that develops after SCI. The Cur-NPs promoted the regeneration and functional recovery of nerves after SCI through anti-inflammatory effects, providing a promising strategy for the repair of SCIs.


Subject(s)
Curcumin , Nanoparticles , Spinal Cord Injuries , Rats , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Micelles , Rats, Sprague-Dawley , Temperature , Spinal Cord Injuries/drug therapy , Anti-Inflammatory Agents , Inflammation/drug therapy , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL