ABSTRACT
Scanning probe techniques can leverage atomically precise forces to sculpt matter at surfaces, atom by atom. These forces have been applied quasi-statically to create surface structures1-7 and influence chemical processes8,9, but exploiting local dynamics10-14 to realize coherent control on the atomic scale remains an intriguing prospect. Chemical reactions15-17, conformational changes18,19 and desorption20 have been followed on ultrafast timescales, but directly exerting femtosecond forces on individual atoms to selectively induce molecular motion has yet to be realized. Here we show that the near field of a terahertz wave confined to an atomically sharp tip provides femtosecond atomic-scale forces that selectively induce coherent hindered rotation in the molecular frame of a bistable magnesium phthalocyanine molecule. Combining lightwave-driven scanning tunnelling microscopy21-24 with ultrafast action spectroscopy10,13, we find that the induced rotation modulates the probability of the molecule switching between its two stable adsorption geometries by up to 39 per cent. Mapping the response of the molecule in space and time confirms that the force acts on the atomic scale and within less than an optical cycle (that is, faster than an oscillation period of the carrier wave of light). We anticipate that our strategy might ultimately enable the coherent manipulation of individual atoms within single molecules or solids so that chemical reactions and ultrafast phase transitions can be manipulated on their intrinsic spatio-temporal scales.
ABSTRACT
Among atomically thin semiconductors, CrSBr stands out as both its bulk and monolayer forms host tightly bound, quasi-one-dimensional excitons in a magnetic environment. Despite its pivotal importance for solid-state research, the exciton lifetime has remained unknown. While terahertz polarization probing can directly trace all excitons, independently of interband selection rules, the corresponding large far-field foci substantially exceed the lateral sample dimensions. Here, we combine terahertz polarization spectroscopy with near-field microscopy to reveal a femtosecond decay of paramagnetic excitons in a monolayer of CrSBr, which is 30 times shorter than the bulk lifetime. We unveil low-energy fingerprints of bound and unbound electron-hole pairs in bulk CrSBr and extract the nonequilibrium dielectric function of the monolayer in a model-free manner. Our results demonstrate the first direct access to the ultrafast dielectric response of quasi-one-dimensional excitons in CrSBr, potentially advancing the development of quantum devices based on ultrathin van der Waals magnets.
ABSTRACT
Parametric downconversion driven by modern, high-power sources of 10-fs-scale near-infrared pulses, in particular intrapulse difference-frequency generation (IPDFG), affords combinations of properties desirable for molecular vibrational spectroscopy in the mid-infrared range: broad spectral coverage, high brilliance, and spatial and temporal coherence. Yet, unifying these in a robust and compact radiation source has remained a key challenge. Here, we address this need by employing IPDFG in a multi-crystal in-line geometry, driven by the 100-W-level, 10.6-fs pulses of a 10.6-MHz-repetition-rate, nonlinearly post-compressed Yb:YAG thin-disk oscillator. Polarization tailoring of the driving pulses using a bichromatic waveplate is followed by a sequence of two crystals, LiIO3 and LiGaS2, resulting in the simultaneous coverage of the 800-cm-1-to-3000-cm-1 spectral range (at -30-dB intensity) with 130â mW of average power. We demonstrate that optical-phase coherence is maintained in this in-line geometry, in theory and experiment, the latter employing ultra-broadband electro-optic sampling. These results pave the way toward coherent spectroscopy schemes like field-resolved and frequency-comb spectroscopy, as well as nonlinear, ultrafast spectroscopy and optical-waveform synthesis across the entire infrared molecular fingerprint region.
ABSTRACT
We demonstrate an active carrier-envelope phase (CEP) stabilization scheme for optical waveforms generated by difference-frequency mixing of two spectrally detuned and phase-correlated pulses. By performing ellipsometry with spectrally overlapping parts of two co-propagating near-infrared generation pulse trains, we stabilize their relative timing to 18 as. Consequently, we can lock the CEP of the generated mid-infrared (MIR) pulses with a remaining phase jitter below 30â mrad. To validate this technique, we employ these MIR pulses for high-harmonic generation in a bulk semiconductor. Our compact, low-cost, and inherently drift-free concept could bring long-term CEP stability to the broad class of passively phase-locked OPA and OPCPA systems operating in a wide range of spectral windows, pulse energies, and repetition rates.
ABSTRACT
The density-driven transition of an exciton gas into an electron-hole plasma remains a compelling question in condensed matter physics. In two-dimensional transition metal dichalcogenides, strongly bound excitons can undergo this phase change after transient injection of electron-hole pairs. Unfortunately, unavoidable nanoscale inhomogeneity in these materials has impeded quantitative investigation into this elusive transition. Here, we demonstrate how ultrafast polarization nanoscopy can capture the Mott transition through the density-dependent recombination dynamics of electron-hole pairs within a WSe2 homobilayer. For increasing carrier density, an initial monomolecular recombination of optically dark excitons transitions continuously into a bimolecular recombination of an unbound electron-hole plasma above 7 × 1012 cm-2. We resolve how the Mott transition modulates over nanometer length scales, directly evidencing the strong inhomogeneity in stacked monolayers. Our results demonstrate how ultrafast polarization nanoscopy could unveil the interplay of strong electronic correlations and interlayer coupling within a diverse range of stacked and twisted two-dimensional materials.
Subject(s)
Transition Elements , Electronics , ElectronsABSTRACT
Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule's highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.
ABSTRACT
The dynamics of momentum-dark exciton formation in transition metal dichalcogenides is difficult to measure experimentally, as many momentum-indirect exciton states are not accessible to optical interband spectroscopy. Here, we combine a tunable pump, high-harmonic probe laser source with a 3D momentum imaging technique to map photoemitted electrons from monolayer WS2. This provides momentum-, energy- and time-resolved access to excited states on an ultrafast time scale. The high temporal resolution of the setup allows us to trace the early-stage exciton dynamics on its intrinsic time scale and observe the formation of a momentum-forbidden dark KΣ exciton a few tens of femtoseconds after optical excitation. By tuning the excitation energy, we manipulate the temporal evolution of the coherent excitonic polarization and observe its influence on the dark exciton formation. The experimental results are in excellent agreement with a fully microscopic theory, resolving the temporal and spectral dynamics of bright and dark excitons in WS2.
ABSTRACT
By sampling terahertz waveforms emitted from InAs surfaces, we reveal how the entire, realistic geometry of typical near-field probes drastically impacts the broadband electromagnetic fields. In the time domain, these modifications manifest as a shift in the carrier-envelope phase and emergence of a replica pulse with a time delay dictated by the length of the cantilever. This interpretation is fully corroborated by quantitative simulations of terahertz emission nanoscopy based on the finite element method. Our approach provides a solid theoretical framework for quantitative nanospectroscopy and sets the stage for a reliable description of subcycle, near-field microscopy at terahertz frequencies.
ABSTRACT
The ability to tailor waveguide cavities and couple them with quantum emitters has developed a realm of nanophotonics encompassing, for example, highly efficient single photon generation or the control of giant photon nonlinearities. Opening new grounds by pushing the interaction of the waveguide cavity and integrated emitters further into the deep subwavelength regime, however, has been complicated by nonradiative losses due to the increasing importance of surface defects when decreasing cavity dimensions. Here, we show efficient suppression of nonradiative recombination for thin waveguide cavities using core-shell semiconductor nanowires. We experimentally reveal the advantages of such nanowires, which host mobile emitters, that is, free excitons, in a one-dimensional (1D) waveguide, highlighting the resulting potential for tunable, active, nanophotonic devices. In our experiment, controlling the nanowire waveguide diameter tunes the luminescence lifetime of excitons in the nanowires across 2 orders of magnitude up to 80 ns. At the smallest wire diameters, we show that this luminescence lifetime can be manipulated by engineering the dielectric environment of the nanowires. Exploiting this unique handle on the spontaneous emission of mobile emitters, we demonstrate an all-dielectric spatial control of the mobile emitters along the axis of the 1D nanowire waveguide.
ABSTRACT
Intersubband (ISB) transitions in semiconductor multi-quantum well (MQW) structures are promising candidates for the development of saturable absorbers at terahertz (THz) frequencies. Here, we exploit amplitude and phase-resolved two-dimensional (2D) THz spectroscopy on the sub-cycle time scale to observe directly the saturation dynamics and coherent control of ISB transitions in a metal-insulator MQW structure. Clear signatures of incoherent pump-probe and coherent four-wave mixing signals are recorded as a function of the peak electric field of the single-cycle THz pulses. All nonlinear signals reach a pronounced maximum for a THz electric field amplitude of 11 kV/cm and decrease for higher fields. We demonstrate that this behavior is a fingerprint of THz-driven carrier-wave Rabi flopping. A numerical solution of the Maxwell-Bloch equations reproduces our experimental findings quantitatively and traces the trajectory of the Bloch vector. This microscopic model allows us to design tailored MQW structures with optimized dynamical properties for saturable absorbers that could be used in future compact semiconductor-based single-cycle THz sources.
ABSTRACT
We present a robust, compact pulse synthesis scheme generating intense phase-locked subcycle multi-terahertz waveforms. The ultrabroadband laser fundamental is split into two parallel branches driving optical rectification in crystals of GaSe and LiGaS2, each operated at the group velocity matching point. The coherent combination of the resulting pulses yields a continuous multi-terahertz spectrum covering 1.5 optical octaves. The corresponding 0.8-cycle electric field waveform is directly mapped out by electro-optic sampling, revealing peak fields of 15 kV/cm at a repetition rate of 0.4 MHz. The multiplexable and power scalable scheme opens the door to strong-field custom-tailored waveforms driving nonlinear optics and light wave electronics.
ABSTRACT
Heterostructures of van der Waals bonded layered materials offer unique means to tailor dielectric screening with atomic-layer precision, opening a fertile field of fundamental research. The optical analyses used so far have relied on interband spectroscopy. Here we demonstrate how a capping layer of hexagonal boron nitride (hBN) renormalizes the internal structure of excitons in a WSe2 monolayer using intraband transitions. Ultrabroadband terahertz probes sensitively map out the full complex-valued mid-infrared conductivity of the heterostructure after optical injection of 1s A excitons. This approach allows us to trace the energies and line widths of the atom-like 1s-2p transition of optically bright and dark excitons as well as the densities of these quasiparticles. The excitonic resonance red shifts and narrows in the WSe2/hBN heterostructure compared to the bare monolayer. Furthermore, the ultrafast temporal evolution of the mid-infrared response function evidences the formation of optically dark excitons from an initial bright population. Our results provide key insight into the effect of nonlocal screening on electron-hole correlations and open new possibilities of dielectric engineering of van der Waals heterostructures.
ABSTRACT
Three-dimensional topological insulators (TIs) have attracted tremendous interest for their possibility to host massless Dirac Fermions in topologically protected surface states (TSSs), which may enable new kinds of high-speed electronics. However, recent reports have outlined the importance of band bending effects within these materials, which results in an additional two-dimensional electron gas (2DEG) with finite mass at the surface. TI surfaces are also known to be highly inhomogeneous on the nanoscale, which is masked in conventional far-field studies. Here, we use near-field microscopy in the mid-infrared spectral range to probe the local surface properties of custom-tailored (Bi0.5Sb0.5)2Te3 structures with nanometer precision in all three spatial dimensions. Applying nanotomography and nanospectroscopy, we reveal a few-nanometer-thick layer of high surface conductivity and retrieve its local dielectric function without assuming any model for the spectral response. This allows us to directly distinguish between different types of surface states. An intersubband transition within the massive 2DEG formed by quantum confinement in the bent conduction band manifests itself as a sharp, surface-bound, Lorentzian-shaped resonance. An additional broadband background in the imaginary part of the dielectric function may be caused by the TSS. Tracing the intersubband resonance with nanometer spatial precision, we observe changes of its frequency, likely originating from local variations of doping or/and the mixing ratio between Bi and Sb. Our results highlight the importance of studying the surfaces of these novel materials on the nanoscale to directly access the local optical and electronic properties via the dielectric function.
ABSTRACT
We demonstrate ultrabroadband electro-optic detection of multi-THz transients using mechanically exfoliated flakes of gallium selenide of a thickness of less than 10 µm, contacted to a diamond substrate by van-der-Waals bonding. While the low crystal thickness allows for extremely broadband phase matching, the excellent optical contact with the index-matched substrate suppresses multiple optical reflections. The high quality of our structure makes our scheme suitable for the undistorted and artifact-free observation of electromagnetic waveforms covering the entire THz spectral range up to the near-infrared regime without the need for correction for the electro-optic response function. With the current revolution of chemically inert quasi-two-dimensional layered materials, we anticipate that exfoliated van-der-Waals materials on index-matched substrates will open new flexible ways of ultrabroadband electro-optic detection at unprecedented frequencies.
ABSTRACT
Achieving control over light-matter interaction in custom-tailored nanostructures is at the core of modern quantum electrodynamics. In strongly and ultrastrongly coupled systems, the excitation is repeatedly exchanged between a resonator and an electronic transition at a rate known as the vacuum Rabi frequency ΩR. For ΩR approaching the resonance frequency ωc, novel quantum phenomena including squeezed states, Dicke superradiant phase transitions, the collapse of the Purcell effect, and a population of the ground state with virtual photon pairs are predicted. Yet, the experimental realization of optical systems with ΩR/ωc ≥ 1 has remained elusive. Here, we introduce a paradigm change in the design of light-matter coupling by treating the electronic and the photonic components of the system as an entity instead of optimizing them separately. Using the electronic excitation to not only boost the electronic polarization but furthermore tailor the shape of the vacuum mode, we push ΩR/ωc of cyclotron resonances ultrastrongly coupled to metamaterials far beyond unity. As one prominent illustration of the unfolding possibilities, we calculate a ground state population of 0.37 virtual photons for our best structure with ΩR/ωc = 1.43 and suggest a realistic experimental scenario for measuring vacuum radiation by cutting-edge terahertz quantum detection.
ABSTRACT
Gold nanoparticles emit broad-band upconverted luminescence upon irradiation with pulsed infrared laser radiation. Although the phenomenon is widely observed, considerable disagreement still exists concerning the underlying physics, most notably over the applicability of concepts such as multiphoton absorption, inelastic scattering, and interband vs intraband electronic transitions. Here, we study single particles and small clusters of particles by employing a spectrally resolved power-law analysis of the irradiation-dependent emission as a sensitive probe of these physical models. Two regimes of emission are identified. At low irradiance levels of kW/cm2, the emission follows a well-defined integer-exponent power law suggestive of a multiphoton process. However, at higher irradiance levels of several kW/cm2, the nonlinearity exponent itself depends on the photon energy detected, a tell-tale signature of a radiating heated electron gas. We show that in this regime, the experiments are incompatible with both interband transitions and inelastic light scattering as the cause of the luminescence, whereas they are compatible with the notion of luminescence linked to intraband transitions.
ABSTRACT
Many of the fundamental optical and electronic properties of atomically thin transition metal dichalcogenides are dominated by strong Coulomb interactions between electrons and holes, forming tightly bound atom-like states called excitons. Here, we directly trace the ultrafast formation of excitons by monitoring the absolute densities of bound and unbound electron-hole pairs in single monolayers of WSe2 on a diamond substrate following femtosecond nonresonant optical excitation. To this end, phase-locked mid-infrared probe pulses and field-sensitive electro-optic sampling are used to map out the full complex-valued optical conductivity of the nonequilibrium system and to discern the hallmark low-energy responses of bound and unbound pairs. While the spectral shape of the infrared response immediately after above-bandgap injection is dominated by free charge carriers, up to 60% of the electron-hole pairs are bound into excitons already on a subpicosecond time scale, evidencing extremely fast and efficient exciton formation. During the subsequent recombination phase, we still find a large density of free carriers in addition to excitons, indicating a nonequilibrium state of the photoexcited electron-hole system.
ABSTRACT
We demonstrate a compact source of energetic and phase-locked multi-terahertz pulses at a repetition rate of 190 kHz. Difference frequency mixing of the fundamental output of an Yb:KGW amplifier with the idler of an optical parametric amplifier in GaSe and LiGaS2 crystals yields a passively phase-locked train of waveforms tunable between 12 and 42 THz. The shortest multi-terahertz pulses contain 1.8 oscillation cycles within the intensity full width at half-maximum. Pulse energies of up to 0.16 µJ and peak electric fields of 13 MV/cm are achieved. Electro-optic sampling reveals a phase stability better than 0.1 π over multiple hours, combined with free carrier-envelope phase tunability. The scalable scheme opens the door to strong-field terahertz optics at unprecedented repetition rates.
ABSTRACT
In ultrabroadband terahertz electro-optic sampling (EOS), spectral filtering of the gate pulse can strongly reduce the quantum noise while the signal level is only weakly affected. The concept is tested for phase-matched electro-optic detection of field transients centered at 45 THz with 12 fs near-infrared gate pulses in AgGaS2. Our new approach increases the experimental signal-to-noise ratio by a factor of 3 compared to standard EOS. Under certain conditions an improvement factor larger than 5 is predicted by our theoretical analysis.
ABSTRACT
The central theme of cavity quantum electrodynamics is the coupling of a single optical mode with a single matter excitation, leading to a doublet of cavity polaritons which govern the optical properties of the coupled structure. Especially in the ultrastrong coupling regime, where the ratio of the vacuum Rabi frequency and the quasi-resonant carrier frequency of light, ΩR/ω c, approaches unity, the polariton doublet bridges a large spectral bandwidth 2ΩR, and further interactions with off-resonant light and matter modes may occur. The resulting multi-mode coupling has recently attracted attention owing to the additional degrees of freedom for designing light-matter coupled resonances, despite added complexity. Here, we experimentally implement a novel strategy to sculpt ultrastrong multi-mode coupling by tailoring the spatial overlap of multiple modes of planar metallic THz resonators and the cyclotron resonances of Landau-quantized two-dimensional electrons, on subwavelength scales. We show that similarly to the selection rules of classical optics, this allows us to suppress or enhance certain coupling pathways and to control the number of light-matter coupled modes, their octave-spanning frequency spectra, and their response to magnetic tuning. This offers novel pathways for controlling dissipation, tailoring quantum light sources, nonlinearities, correlations as well as entanglement in quantum information processing.