Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
New Phytol ; 232(2): 567-578, 2021 10.
Article in English | MEDLINE | ID: mdl-34235751

ABSTRACT

Leaf habit is a major axis of plant diversity that has consequences for carbon balance since the leaf is the primary site of photosynthesis. Nonstructural carbohydrates (NSCs) produced by photosynthesis can be allocated to storage and serve as a resiliency mechanism to future abiotic and biotic stress. However, how leaf habit affects NSC storage in an evolutionary context has not been shown. Using a comparative physiological framework and an analysis of evolutionary model fitting, we examined if variation in NSC storage is explained by leaf habit. We measured sugar and starch concentrations in 51 oak species (Quercus spp.) growing in a common garden and representing multiple evolutions of three different leaf habits (deciduous, brevideciduous and evergreen). The best fitting evolutionary models indicated that deciduous oak species are evolving towards higher NSC concentrations than their brevideciduous and evergreen relatives. Notably, this was observed for starch (the primary storage molecule) in the stem (a long-term C storage organ). Overall, our work provides insight into the evolutionary drivers of NSC storage and suggests that a deciduous strategy may confer an advantage against stress associated with a changing world. Future work should examine additional clades to further corroborate this idea.


Subject(s)
Quercus , Carbohydrate Metabolism , Carbohydrates , Plant Leaves , Trees
2.
New Phytol ; 221(3): 1466-1477, 2019 02.
Article in English | MEDLINE | ID: mdl-30368825

ABSTRACT

Despite the importance of nonstructural carbohydrates (NSC) for growth and survival in woody plants, we know little about whole-tree NSC storage. The conventional theory suggests that NSC reserves will increase over the growing season and decrease over the dormant season. Here, we compare storage in five temperate tree species to determine the size and seasonal fluctuation of whole-tree total NSC pools as well as the contribution of individual organs. NSC concentrations in the branches, stemwood, and roots of 24 trees were measured across 12 months. We then scaled up concentrations to the whole-tree and ecosystem levels using allometric equations and forest stand inventory data. While whole-tree total NSC pools followed the conventional theory, sugar pools peaked in the dormant season and starch pools in the growing season. Seasonal depletion of total NSCs was minimal at the whole-tree level, but substantial at the organ level, particularly in branches. Surprisingly, roots were not the major storage organ as branches stored comparable amounts of starch throughout the year, and root reserves were not used to support springtime growth. Scaling up NSC concentrations to the ecosystem level, we find that commonly used, process-based ecosystem and land surface models all overpredict NSC storage.


Subject(s)
Carbohydrates/chemistry , Seasons , Trees/metabolism , Biomass , Ecosystem , Species Specificity , Starch/metabolism , Sugars/metabolism
3.
Ann Bot ; 124(2): 297-306, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31330537

ABSTRACT

BACKGROUND AND AIMS: Deciduous angiosperm trees transport xylem sap through trunks and branches in vessels within annual growth rings. Utilizing previous growth rings for sap transport could increase vessel network size and redundancy but may expose new xylem to residual air embolisms in the network. Despite the important role of vessel networks in sap transport and drought resistance, our understanding of cross-ring connections within and between species is limited. METHODS: We studied cross-ring connections in four temperate deciduous trees using dye staining and X-ray microcomputed tomography (microCT) to detect xylem connectivity across growth rings and quantify their impact on hydraulic conductivity. KEY RESULTS: Acer rubrum and Fraxinus americana had cross-ring connections visible in microCT but only A. rubrum used previous growth rings for axial sap flow. Fagus grandifolia and Quercus rubra, however, did not have cross-ring connections. Accounting for the number of growth rings that function for axial transport improved hydraulic conductivity estimates. CONCLUSIONS: These data suggest that the presence of cross-ring connections may help explain aspects of whole-tree xylem sap transport and should be considered for plant hydraulics measurements in these species and others with similar anatomy.


Subject(s)
Plant Transpiration , Trees , Water , X-Ray Microtomography , Xylem
4.
New Phytol ; 219(1): 77-88, 2018 07.
Article in English | MEDLINE | ID: mdl-29663388

ABSTRACT

During drought, xylem sap pressures can approach or exceed critical thresholds where gas embolisms form and propagate through the xylem network, leading to systemic hydraulic dysfunction. The vulnerability segmentation hypothesis (VSH) predicts that low-investment organs (e.g. leaf petioles) should be more vulnerable to embolism spread compared to high-investment, perennial organs (e.g. trunks, stems), as a means of mitigating embolism spread and excessive negative pressures in the perennial organs. We tested this hypothesis by measuring air-seeding thresholds using the single-vessel air-injection method and calculating hydraulic safety margins in four northern hardwood tree species of the northeastern United States, in both saplings and canopy height trees, and at five points along the soil-plant-atmosphere continuum. Acer rubrum was the most resistant to air-seeding and generally supported the VSH. However, Fagus grandifolia, Fraxinus americana and Quercus rubra showed little to no variation in air-seeding thresholds across organ types within each species. Leaf-petiole xylem operated at water potentials close to or exceeding their hydraulic safety margins in all species, whereas roots, trunks and stems of A. rubrum, F. grandifolia and Q. rubra operated within their safety margins, even during the third-driest summer in the last 100 yr.


Subject(s)
Acer/physiology , Fagus/physiology , Fraxinus/physiology , Plant Transpiration/physiology , Quercus/physiology , Droughts , New England , Plant Leaves/physiology , Plant Roots/physiology , Plant Stems/physiology , Trees , Water/physiology , Xylem/physiology
5.
Ann Bot ; 121(3): 483-488, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29293875

ABSTRACT

Background and Aims: The leaf axis of members of the order Cycadales ('cycads') has long been recognized by its configuration of independent vascular bundles that, in transverse section, resemble the Greek letter omega (hence the 'omega pattern'). This provides a useful diagnostic character for the order, especially when applied to paleobotany. The function of this pattern has never been elucidated. Here we provide a three-dimensional analysis and explain the pattern in terms of the hydraulic architecture of the pinnately compound cycad leaf. Methods: The genus Cycas was used as a simple model, because each leaflet is supplied by a single vascular bundle. Sequential sectioning was conducted throughout the leaf axis and photographed with a digital camera. Photographs were registered and converted to a cinematic format, which provided an objective method of analysis. Key Results: The omega pattern in the petiole can be sub-divided into three vascular components, an abaxial 'circle', a central 'column' and two adaxial 'wings', the last being the only direct source of vascular supply to the leaflets. Each leaflet is supplied by a vascular bundle that has divided or migrated directly from the closest wing bundle. There is neither multiplication nor anastomoses of vascular bundles in the other two components. Thus, as one proceeds from base to apex along the leaf axis, the number of vascular bundles in circle and column components is reduced distally by their uniform migration throughout all components. Consequently, the distal leaflets are irrigated by the more abaxial bundles, guaranteeing uniform water supply along the length of the axis. Conclusions: The omega pattern exemplifies one of the many solutions plants have achieved in supplying distal appendages of an axis with a uniform water supply. Our method presents a model that can be applied to other genera of cycads with more complex vascular organization.


Subject(s)
Cycadopsida/anatomy & histology , Plant Leaves/anatomy & histology , Cycadopsida/physiology , Cycadopsida/ultrastructure , Models, Biological , Plant Leaves/physiology , Plant Leaves/ultrastructure , Water/metabolism
6.
Am J Bot ; 104(9): 1424-1430, 2017 09.
Article in English | MEDLINE | ID: mdl-29885240

ABSTRACT

PREMISE OF THE STUDY: Despite the strong influence of the frequency and distribution of vessel endings on both hydraulic safety and efficiency, detailed anatomical descriptions or measurements of these structures are generally lacking. METHODS: Here we used high-resolution x-ray microcomputed tomography (microCT) to identify and describe xylem vessel endings within Acer rubrum root segments (1.0-2.1 mm diameter, ∼2 mm long). We then compared vessel-lumen diameter, pit density, vessel element length, and perforation plate angle between non-ending vessels (those that traverse an entire segment) and those that end within a segment using three-dimensional image analysis. KEY RESULTS: We found 214 vessel endings, 37 complete vessels, and 385 non-ending vessels within four A. rubrum root segments. Vessels that ended within the segments tended to have more acute perforation plate angles and had a smaller diameter than those that did not end within the segments. Most vessel diameters tapered within the last few vessel elements, but the perforation plate angle apparently changed over longer distances. Intervessel pit density and vessel element length did not differ between ending and non-ending vessels. CONCLUSIONS: Vessel endings were surprisingly frequent in A. rubrum roots despite the common perception that root vessels are longer than vessels in other tissues. MicroCT proved to be a useful tool for studying the three-dimensional arrangement of vessel endings within xylem networks, and these data will be helpful in developing a better understanding of vessel ending microstructure and function.


Subject(s)
Acer/anatomy & histology , Plant Roots/anatomy & histology , X-Ray Microtomography , Xylem/anatomy & histology
7.
New Phytol ; 206(2): 590-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25558814

ABSTRACT

We know surprisingly little about whole-tree nonstructural carbon (NSC; primarily sugars and starch) budgets. Even less well understood is the mixing between recent photosynthetic assimilates (new NSC) and previously stored reserves. And, NSC turnover times are poorly constrained. We characterized the distribution of NSC in the stemwood, branches, and roots of two temperate trees, and we used the continuous label offered by the radiocarbon (carbon-14, (14) C) bomb spike to estimate the mean age of NSC in different tissues. NSC in branches and the outermost stemwood growth rings had the (14) C signature of the current growing season. However, NSC in older aboveground and belowground tissues was enriched in (14) C, indicating that it was produced from older assimilates. Radial patterns of (14) C in stemwood NSC showed strong mixing of NSC across the youngest growth rings, with limited 'mixing in' of younger NSC to older rings. Sugars in the outermost five growth rings, accounting for two-thirds of the stemwood pool, had a mean age < 1 yr, whereas sugars in older growth rings had a mean age > 5 yr. Our results are thus consistent with a previously-hypothesized two-pool ('fast' and 'slow' cycling NSC) model structure. These pools appear to be physically distinct.


Subject(s)
Carbon/metabolism , Trees/physiology , Carbohydrate Metabolism , Carbon Radioisotopes/analysis , Models, Biological , Photosynthesis , Plant Roots/growth & development , Plant Roots/physiology , Plant Stems/growth & development , Plant Stems/physiology , Starch/metabolism , Trees/growth & development , Wood/growth & development , Wood/physiology
8.
Plant Cell Environ ; 36(11): 1938-49, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23701011

ABSTRACT

We investigated the common assumption that severing stems and petioles under water preserves the hydraulic continuity in the xylem conduits opened by the cut when the xylem is under tension. In red maple and white ash, higher percent loss of conductivity (PLC) in the afternoon occurred when the measurement segment was excised under water at native xylem tensions, but not when xylem tensions were relaxed prior to sample excision. Bench drying vulnerability curves in which measurement samples were excised at native versus relaxed tensions showed a dramatic effect of cutting under tension in red maple, a moderate effect in sugar maple, and no effect in paper birch. We also found that air injection of cut branches (red and sugar maple) at pressures of 0.1 and 1.0 MPa resulted in PLC greater than predicted from vulnerability curves for samples cut 2 min after depressurization, with PLC returning to expected levels for samples cut after 75 min. These results suggest that sampling methods can generate PLC patterns indicative of repair under tension by inducing a degree of embolism that is itself a function of xylem tensions or supersaturation of dissolved gases (air injection) at the moment of sample excision. Implications for assessing vulnerability to cavitation and levels of embolism under field conditions are discussed.


Subject(s)
Gases/metabolism , Xylem/physiology , Acer/physiology , Air , Betula/physiology , Circadian Rhythm/physiology , Pressure , Trees/physiology , Water
9.
Am J Bot ; 99(12): 1891-902, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23221497

ABSTRACT

Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.


Subject(s)
Arecaceae/cytology , Arecaceae/growth & development , Plant Stems/cytology , Plant Stems/growth & development , Animals , Arecaceae/anatomy & histology , Arecaceae/physiology , Cellular Senescence , Plant Stems/anatomy & histology , Plant Stems/physiology , Plant Vascular Bundle/anatomy & histology , Plant Vascular Bundle/cytology , Plant Vascular Bundle/genetics , Plant Vascular Bundle/physiology , Plants , Trees/anatomy & histology , Trees/cytology , Trees/growth & development , Trees/physiology
10.
Science ; 378(6620): 642-646, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36356120

ABSTRACT

The earliest vascular plants had stems with a central cylindrical strand of water-conducting xylem, which rapidly diversified into more complex shapes. This diversification is understood to coincide with increases in plant body size and branching; however, no selection pressure favoring xylem strand-shape complexity is known. We show that incremental changes in xylem network organization that diverge from the cylindrical ancestral form lead to progressively greater drought resistance by reducing the risk of hydraulic failure. As xylem strand complexity increases, independent pathways for embolism spread become fewer and increasingly concentrated in more centrally located conduits, thus limiting the systemic spread of embolism during drought. Selection by drought may thus explain observed trajectories of xylem strand evolution in the fossil record and the diversity of extant forms.


Subject(s)
Biological Evolution , Droughts , Tracheophyta , Water , Xylem , Plant Leaves/metabolism , Tracheophyta/metabolism , Water/metabolism , Xylem/metabolism
11.
Ann Bot ; 107(6): 909-16, 2011 May.
Article in English | MEDLINE | ID: mdl-21335327

ABSTRACT

BACKGROUND AND AIMS: Conifers are characterized by the paucity of axillary buds which in dicotyledonous trees usually occur at every node. To compensate, conifers also produce 'axillary meristems', which may be stimulated to late development. In juvenile material of Wollemia nobilis (Araucariaceae: Massart's model) first-order (plagiotropic) branches lack both axillary buds and, seemingly, axillary meristems. This contrasts with orthotropic (trunk) axes, which produce branches, either within the terminal bud or as reiterated orthotropic axes originating from axillary meristems. However, plagiotropic axes do produce branches if they are decapitated. This study investigated how this can occur if axillary meristems are not the source. METHODS: The terminal buds of a series of plagiotropic branches on juvenile trees were decapitated in order to generate axillary shoots. Shoots were culled at about weekly intervals to obtain stages in lateral shoot development. Serial sections were cut with a sliding microtome from the distal end of each sample and scanned sequentially for evidence of axillary meristems and early bud development. KEY RESULTS: Anatomical search produced no clear evidence of pre-existing axillary meristems but did reveal stages of bud initiation. Buds were initiated in a group of small starch-rich cortical cells. Further development involved de-differentiation of these small cells and the development of contrasting outer and inner regions. The outer part becomes meristematic and organizes the apex of the new branch. The inner part develops a callus-like tissue of vacuolated cells within which vascular cambia are developed. This kind of insertion of a branch on the parent axis seems not to have been described before. CONCLUSIONS: Axillary meristems in Wollemia characterize the leaf axils of trunk axes so that the origin of reiterated shoots is clear. Plagiotropic axes seemingly lack axillary meristems but still produce axillary branches by distinctive developmental processes. These observations demonstrate limited understanding of branch initiation in trees generally.


Subject(s)
Meristem/growth & development , Tracheophyta/growth & development , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Shoots/anatomy & histology , Plant Shoots/growth & development , Tracheophyta/anatomy & histology
12.
Tree Physiol ; 40(10): 1355-1365, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32578851

ABSTRACT

Nonstructural carbohydrates (NSCs) play a critical role in plant physiology and metabolism, yet we know little about their distribution within individual organs such as the stem. This leaves many open questions about whether reserves deep in the stem are metabolically active and available to support functional processes. To gain insight into the availability of reserves, we measured radial patterns of NSCs over the course of a year in the stemwood of temperate trees with contrasting wood anatomy (ring porous vs diffuse porous). In a subset of trees, we estimated the mean age of soluble sugars within and between different organs using the radiocarbon (14C) bomb spike approach. First, we found that NSC concentrations were the highest and most seasonally dynamic in the outermost stemwood segments for both ring-porous and diffuse-porous trees. However, while the seasonal fluctuation of NSCs was dampened in deeper stemwood segments for ring-porous trees, it remained high for diffuse-porous trees. These NSC dynamics align with differences in the proportion of functional sapwood and the arrangement of vessels between ring-porous and diffuse-porous trees. Second, radial patterns of 14C in the stemwood showed that sugars became older when moving toward the pith. The same pattern was found in the coarse roots. Finally, when taken together, our results highlight how the radial distribution and age of NSCs relate to wood anatomy and suggest that while deeper, and likely older, reserves in the stemwood fluctuated across the seasons, the deepest reserves at the center of the stem were not used to support tree metabolism under usual environmental conditions.


Subject(s)
Trees , Wood , Carbohydrates , Plant Leaves , Seasons
13.
Funct Plant Biol ; 45(5): 501-508, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32290989

ABSTRACT

Hemlock woolly adelgid (Adelges tsugae Annand) (HWA) is an invasive insect that feeds upon the foliage of eastern hemlock (Tsuga canadensis (L.) Carrière) trees, leading to a decline in health and often mortality. The exact mechanism leading to the demise of eastern hemlocks remains uncertain because little is known about how HWA infestation directly alters the host's physiology. To evaluate the physiological responses of eastern hemlock during early infestation of HWA, we measured needle loss, xylem hydraulic conductivity, vulnerability to cavitation, tracheid anatomy, leaf-level gas exchange, leaf water potential and foliar cation and nutrient levels on HWA-infested and noninfested even-aged trees in an experimental garden. HWA infestation resulted in higher xylem hydraulic conductivity correlated with an increase in average tracheid lumen area and no difference in vulnerability to cavitation, indicating that needle loss associated with HWA infestation could not be attributed to reduced xylem transport capacity. HWA-infested trees exhibited higher rates of net photosynthesis and significant changes in foliar nutrient partitioning, but showed no differences in branch increment growth rates compared with noninfested trees. This study suggests that HWA-induced decline in the health of eastern hemlock trees is not initially caused by compromised water relations or needle loss.

14.
Funct Plant Biol ; 41(1): 37-47, 2013 Feb.
Article in English | MEDLINE | ID: mdl-32480964

ABSTRACT

We tested the hypothesis that an age-dependent reduction in leaf hydraulic conductance (Kleaf) influences the timing of leaf senescence via limitation of the stomatal aperture on xylem compound delivery to leaves of tomato (Solanum lycopersicum L.), the tropical trees Anacardium excelsum Kunth, Pittoniotis trichantha Griseb, and the temperate trees Acer saccharum Marsh. and Quercus rubra L. The onset of leaf senescence was preceded by a decline in Kleaf in tomato and the tropical trees, but not in the temperate trees. Age-dependent changes in Kleaf in tomato were driven by a reduction in leaf vein density without a proportional increase in the xylem hydraulic supply. A decline in stomatal conductance accompanied Kleaf reduction with age in tomato but not in tropical and temperate tree species. Experimental manipulations that reduce the flow of xylem-transported compounds into leaves with open stomata induced early leaf senescence in tomato and A. excelsum, but not in P. trichantha, A. saccharum and Q. rubra leaves. We propose that in tomato, a reduction in Kleaf limits the delivery of xylem-transported compounds into the leaves, thus making them vulnerable to senescence. In the tropical evergreen tree A. excelsum, xylem-transported compounds may play a role in signalling the timing of senescence but are not under leaf hydraulic regulation; leaf senescence in the deciduous trees A. trichanta, A. saccharum and Q. rubra is not influenced by leaf vascular transport.

SELECTION OF CITATIONS
SEARCH DETAIL