Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cell ; 183(2): 363-376.e13, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33007267

ABSTRACT

Although treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs) can produce remarkably durable responses, most patients develop early disease progression. Furthermore, initial response assessment by conventional imaging is often unable to identify which patients will achieve durable clinical benefit (DCB). Here, we demonstrate that pre-treatment circulating tumor DNA (ctDNA) and peripheral CD8 T cell levels are independently associated with DCB. We further show that ctDNA dynamics after a single infusion can aid in identification of patients who will achieve DCB. Integrating these determinants, we developed and validated an entirely noninvasive multiparameter assay (DIREct-On, Durable Immunotherapy Response Estimation by immune profiling and ctDNA-On-treatment) that robustly predicts which patients will achieve DCB with higher accuracy than any individual feature. Taken together, these results demonstrate that integrated ctDNA and circulating immune cell profiling can provide accurate, noninvasive, and early forecasting of ultimate outcomes for NSCLC patients receiving ICIs.


Subject(s)
Biomarkers, Pharmacological/blood , Circulating Tumor DNA/analysis , Immune Checkpoint Inhibitors/therapeutic use , Adult , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/genetics , Female , Humans , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/metabolism , Immunotherapy/methods , Lung Neoplasms/pathology , Male , Middle Aged , Programmed Cell Death 1 Receptor/metabolism
2.
Nature ; 580(7802): 245-251, 2020 04.
Article in English | MEDLINE | ID: mdl-32269342

ABSTRACT

Radiologic screening of high-risk adults reduces lung-cancer-related mortality1,2; however, a small minority of eligible individuals undergo such screening in the United States3,4. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)5, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed 'lung cancer likelihood in plasma' (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.


Subject(s)
Circulating Tumor DNA/analysis , Circulating Tumor DNA/genetics , Early Detection of Cancer/methods , Genome, Human/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Mutation , Cohort Studies , Female , Hematopoiesis/genetics , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/blood , Lung Neoplasms/pathology , Male , Middle Aged , Reproducibility of Results
3.
J Thorac Oncol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971369

ABSTRACT

INTRODUCTION: The current standard of care for patients with inoperable stage III non-small cell lung cancer (NSCLC) includes chemoradiotherapy (CRT) followed by one year of checkpoint inhibitor (CPI) therapy. However, the optimal duration of consolidation CPI remains unknown. Here, we characterized the relationship between circulating tumor DNA (ctDNA) minimal residual disease (MRD) and clinical outcomes of unresectable locally advanced NSCLC patients treated on a phase 2 trial of short course consolidation immunotherapy after CRT, with the goal of testing if ctDNA may be able to identify patients who do not require a full year of treatment. PATIENTS AND METHODS: Plasma samples for ctDNA analysis were collected from patients on the BTCRC LUN 16-081 trial after completion of CRT, prior to C2D1 of CPI (i.e. 1 month after treatment start), and at the end of up to 6 months of treatment. Tumor-informed ctDNA MRD analysis was performed using CAPP-Seq. Levels of ctDNA at each time point were correlated with clinical outcomes. RESULTS: Detection of ctDNA predicted significantly inferior progression-free survival (PFS) after completion of CRT (24-month 29% vs 65%, P = 0.0048), prior to C2D1 of CPI (24-month 0% vs 72%, P < 0.0001) and at the end of CPI (24-month 15% vs 67%, P = 0.0011). Additionally, patients with decreasing or undetectable ctDNA levels after one cycle of CPI had improved outcomes compared to patients with increasing ctDNA levels (24-month PFS 72% vs 0%, P < 0.0001). Progression of disease occurred within <12 months of starting CPI in all patients with increasing ctDNA levels at C2D1. CONCLUSION: Detection of ctDNA before, during, or after 6 months of consolidation CPI is strongly associated with inferior outcomes. Our findings suggest that analysis of ctDNA MRD may enable personalizing the duration of consolidation immunotherapy treatment.

4.
Cancer Res ; 83(6): 861-874, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36652552

ABSTRACT

Radiotherapy (RT) is one of the primary treatments of head and neck squamous cell carcinoma (HNSCC), which has a high-risk of locoregional failure (LRF). Presently, there is no reliable predictive biomarker of radioresistance in HNSCC. Here, we found that mutations in NFE2L2, which encodes Nrf2, are associated with a significantly higher rate of LRF in patients with oral cavity cancer treated with surgery and adjuvant (chemo)radiotherapy but not in those treated with surgery alone. Somatic mutation of NFE2L2 led to Nrf2 activation and radioresistance in HNSCC cells. Tumors harboring mutant Nrf2E79Q were substantially more radioresistant than tumors with wild-type Nrf2 in immunocompetent mice, whereas the difference was diminished in immunocompromised mice. Nrf2E79Q enhanced radioresistance through increased recruitment of intratumoral polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) and reduction of M1-polarized macrophages. Treatment with the glutaminase inhibitor CB-839 overcame the radioresistance induced by Nrf2E79Q or Nrf2E79K. RT increased expression of PMN-MDSC-attracting chemokines, including CXCL1, CXLC3, and CSF3, in Nrf2E79Q-expressing tumors via the TLR4, which could be reversed by CB-839. This study provides insights into the impact of NFE2L2 mutations on radioresistance and suggests that CB-839 can increase radiosensitivity by switching intratumoral myeloid cells to an antitumor phenotype, supporting clinical testing of CB-839 with RT in HNSCC with NFE2L2 mutations. SIGNIFICANCE: NFE2L2 mutations are predictive biomarkers of radioresistance in head and neck cancer and confer sensitivity to glutaminase inhibitors to overcome radioresistance.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Myeloid-Derived Suppressor Cells , Animals , Mice , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/pathology , Glutaminase/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/metabolism , Mutation , Myeloid-Derived Suppressor Cells/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Radiation Tolerance/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Humans
5.
Clin Cancer Res ; 28(23): 5202-5210, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36129469

ABSTRACT

PURPOSE: Tumor-infiltrating lymphocytes (TIL) are immune cell populations found within tumors, critical in the antigen-specific host immune response. In this study, we aimed to elucidate the prognostic significance of CD3+, CD4+, and CD8+ TILs in nasopharyngeal cancer (NPC). EXPERIMENTAL DESIGN: Immune cell infiltration was quantified in NPC samples (n = 50) using RNA-sequencing (RNA-seq) data based on rearranged T-cell receptor (TCR) reads and the Estimation of Stromal and Immune cells in malignant tumors using expression data (ESTIMATE) immune score tool. The differential abundances of TIL subset populations were also characterized through IHC staining of formalin-fixed, paraffin-embedded samples from a training cohort (n = 35), which was a subset of the RNA-seq cohort (n = 50). RESULTS: In the RNA-seq cohort, patients with higher rearranged TCR reads experienced superior 5- and 10-year overall survival (OS; P < 0.001), and disease-free survival (DFS; P < 0.001). Similarly, patients with higher ESTIMATE immune scores experienced superior 5- and 10-year OS (P = 0.024) and DFS (P = 0.007). In the training cohort, high abundances of CD8+ TILs were significantly associated with improved 5- and 10-year OS (P = 0.003) and DFS (P = 0.005). These findings were corroborated in an independent validation cohort (n = 84), and combined analysis of the training and validation cohorts [n = 119 (35+84)], which further demonstrated improved 5- and 10-year survival in terms of locoregional control (P < 0.001) and distant metastasis (P = 0.03). CONCLUSIONS: Taken together, our study highlights the prognostic value of CD8+ TILs in NPC, and the potential of future investigations into cellular-based immunotherapies employing CD8+ lymphocytes.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Nasopharyngeal Neoplasms , Humans , Prognosis , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Carcinoma/pathology , CD8-Positive T-Lymphocytes
6.
Nat Biotechnol ; 40(4): 585-597, 2022 04.
Article in English | MEDLINE | ID: mdl-35361996

ABSTRACT

Profiling of circulating tumor DNA (ctDNA) in the bloodstream shows promise for noninvasive cancer detection. Chromatin fragmentation features have previously been explored to infer gene expression profiles from cell-free DNA (cfDNA), but current fragmentomic methods require high concentrations of tumor-derived DNA and provide limited resolution. Here we describe promoter fragmentation entropy as an epigenomic cfDNA feature that predicts RNA expression levels at individual genes. We developed 'epigenetic expression inference from cell-free DNA-sequencing' (EPIC-seq), a method that uses targeted sequencing of promoters of genes of interest. Profiling 329 blood samples from 201 patients with cancer and 87 healthy adults, we demonstrate classification of subtypes of lung carcinoma and diffuse large B cell lymphoma. Applying EPIC-seq to serial blood samples from patients treated with PD-(L)1 immune-checkpoint inhibitors, we show that gene expression profiles inferred by EPIC-seq are correlated with clinical response. Our results indicate that EPIC-seq could enable noninvasive, high-throughput tissue-of-origin characterization with diagnostic, prognostic and therapeutic potential.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Adult , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , DNA Fragmentation , Gene Expression , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation
7.
J Pathol ; 220(1): 97-107, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19718711

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer commonly occurring in southern China. To decipher the molecular basis of this cancer, we performed high-resolution array CGH analysis on eight tumour lines and 10 primary tumours to identify the genes involved in NPC tumorigenesis. In this study, multiple regions of gain were consistently found at 1q21-q24, 7q11-12, 7q21-22., 11q13, 12p13, 12q13, 19p13 and 19q13. Importantly, a 2.1 Mb region at 12p13.31 was highly amplified in a NPC xenograft, xeno-2117. By FISH mapping, we have further delineated the amplicon to a 1.24 region flanked by RP11-319E16 and RP11-433J6. Copy number gains of this amplicon were confirmed in 21/41 (51%) primary tumours, while three cases (7.3%) showed high copy number amplification. Among the 13 genes within this amplicon, three candidate genes, lymphotoxin beta receptor (LTbetaR), tumour necrosis factor receptor superfamily memeber 1A (TNFRSF1R) and FLJ10665, were specifically over-expressed in the NPC xenograft with 12p13.3 amplification. However, only LTbetaR was frequently over-expressed in primary tumours. LTbetaR is a member of the TNF family of receptors, which can modulate NF-kappaB signalling pathways. Over-expression of LTbetaR in nasopharyngeal epithelial cells resulted in an increase of NF-kappaB activity and cell proliferation. In vivo study showed that suppression of LTbetaR by siRNA led to growth inhibition in the NPC tumour with 12p13.3 amplification. These findings implied that LTbetaR is a potential NPC-associated oncogene within the 12p13.3 amplicon and that its alteration is important in NPC tumorigenesis.


Subject(s)
Chromosomes, Human, Pair 12/genetics , Nasopharyngeal Neoplasms/genetics , Animals , Comparative Genomic Hybridization , Gene Amplification , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , In Situ Hybridization, Fluorescence , Lymphotoxin beta Receptor/biosynthesis , Lymphotoxin beta Receptor/genetics , Mice , Mice, Nude , NF-kappa B/metabolism , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasm Transplantation , Oncogenes , Reverse Transcriptase Polymerase Chain Reaction/methods , Signal Transduction/genetics , Signal Transduction/physiology , Transcription, Genetic , Transplantation, Heterologous , Tumor Cells, Cultured
8.
Int J Cancer ; 126(9): 2036-48, 2010 May 01.
Article in English | MEDLINE | ID: mdl-19739117

ABSTRACT

Polo-like kinase 1 (Plk1) is a critical regulator of many stages of mitosis; increasing evidence indicates that Plk1 overexpression correlates with poor clinical outcome, yet its mechanism of regulation remains unknown. Hence, a detailed evaluation was undertaken of Plk1 expression in human nasopharyngeal cancer (NPC), the cellular effects of targeting Plk1 using siRNA in combination with ionizing radiation (RT) and potential upstream microRNAs (miRs) that might regulate Plk1 expression. Using immunohistochemistry, Plk1 was observed to be overexpressed in 28 of 40 (70%) primary NPC biopsies, which in turn was associated with a higher likelihood of recurrence (p = 0.018). SiPlk1 significantly inhibited Plk1 mRNA and protein expression, and decreased Cdc25c levels in NPC cell lines. This depletion resulted in cytotoxicity of C666-1 cells, enhanced by the addition of RT, mediated by G2/M arrest, increased DNA double-strand breaks, apoptosis, and caspase activation. Immunofluorescence demonstrated that the G2/M arrest was associated with aberrant spindle formation, leading to mitotic arrest. In vivo, transfection of C666-1 cells and systemic delivery of siPlk1 decreased tumour growth. MicroRNA-100 (miR-100) was predicted to target Plk1 mRNA, which was indeed underexpressed in C666-1 cells, inversely correlating with Plk1 expression. Using luciferase constructs containing the 3'-UTR of Plk1 sequence, we document that miR-100 can directly target Plk1. Hence, our data demonstrate for the first time that underexpressed miR-100 leads to Plk1 overexpression, which in turn contributes to NPC progression. Targeting Plk1 will cause mitotic catastrophe, with significant cytotoxicity both in vitro and in vivo, underscoring the important therapeutic opportunity of Plk1 in NPC.


Subject(s)
Cell Cycle Proteins/genetics , MicroRNAs/physiology , Nasopharyngeal Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Animals , Apoptosis , Cell Cycle Proteins/antagonists & inhibitors , Cell Survival/radiation effects , Female , Gene Expression Regulation , Histones/analysis , Humans , Mice , Mice, Inbred BALB C , Nasopharyngeal Neoplasms/enzymology , Nasopharyngeal Neoplasms/therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , RNA, Messenger/analysis , RNA, Small Interfering/genetics , Polo-Like Kinase 1
9.
Clin Cancer Res ; 15(11): 3716-24, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19470731

ABSTRACT

PURPOSE: Seliciclib is a small-molecule cyclin-dependent kinase inhibitor, which has been reported to induce apoptosis and cell cycle arrest in EBV-negative nasopharyngeal carcinoma cell lines. Because most nasopharyngeal carcinoma patients harbor EBV, we proceeded to evaluate the cytotoxic effects of seliciclib in EBV-positive nasopharyngeal carcinoma models. EXPERIMENTAL DESIGN: Cytotoxicity of seliciclib was investigated in the EBV-positive cell line C666-1 and the C666-1 and C15 xenograft models. Caspase activities and cell cycle analyses were measured by flow cytometry. Efficacy of combined treatment of seliciclib with radiation therapy was also evaluated. RESULTS: Seliciclib caused significant cytotoxicity in the C666-1 cells in a time- and dose-dependent manner, with accumulation of cells in both sub-G(1) and G(2)-M phases, indicative of apoptosis and cell cycle arrest, respectively. Caspase-2, -3, -8, and -9 activities were all increased, with caspase-3 being the most significantly activated at 48 h after treatment. These cells also showed a reduction of Mcl-1 mRNA and protein levels. Combined treatment of seliciclib with radiation therapy showed a synergistic interaction with enhanced cytotoxicity in C666-1 cells and delayed repair of double-strand DNA breaks. For in vivo models, significant delays in tumor growth were observed for both C666-1 and C15 tumors, which were associated with enhanced apoptosis as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and immunohistochemistry analyses. CONCLUSIONS: Seliciclib enhanced the antitumor efficacy of radiation therapy in EBV-positive nasopharyngeal carcinoma, characterized by G(2)-M arrest, and apoptosis, associated with an induction in caspase activity. This process is mediated by reduction in Mcl-1 expression and by attenuation of double-strand DNA break repair.


Subject(s)
Nasopharyngeal Neoplasms/therapy , Purines/therapeutic use , Radiation, Ionizing , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/radiation effects , Blotting, Western , Caspase 2/metabolism , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Combined Modality Therapy , Cyclin-Dependent Kinases/antagonists & inhibitors , DNA Breaks, Double-Stranded/drug effects , DNA Breaks, Double-Stranded/radiation effects , Dose-Response Relationship, Drug , Humans , Mice , Myeloid Cell Leukemia Sequence 1 Protein , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Roscovitine , Time Factors , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Nat Cancer ; 1(2): 176-183, 2020 02.
Article in English | MEDLINE | ID: mdl-34505064

ABSTRACT

Circulating tumor DNA (ctDNA) molecular residual disease (MRD) following curative-intent treatment strongly predicts recurrence in multiple tumor types, but whether further treatment can improve outcomes in patients with MRD remains unclear. We applied CAPP-Seq ctDNA analysis to 218 samples from 65 patients receiving chemoradiation therapy (CRT) for locally advanced NSCLC, including 28 patients receiving consolidation immune checkpoint inhibition (CICI). Patients with undetectable ctDNA after CRT had excellent outcomes whether or not they received CICI. Among such patients, one died from CICI-related pneumonitis, highlighting the potential utility of only treating patients with MRD. In contrast, patients with MRD after CRT who received CICI had significantly better outcomes than patients who did not receive CICI. Furthermore, the ctDNA response pattern early during CICI identified patients responding to consolidation therapy. Our results suggest that CICI improves outcomes for NSCLC patients with MRD and that ctDNA analysis may facilitate personalization of consolidation therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Circulating Tumor DNA/genetics , Disease Progression , Humans , Immunotherapy , Lung Neoplasms/therapy , Neoplasm, Residual/genetics
11.
Clin Cancer Res ; 26(12): 2849-2858, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32046999

ABSTRACT

PURPOSE: Treatment with PD-(L)1 blockade can produce remarkably durable responses in patients with non-small cell lung cancer (NSCLC). However, a significant fraction of long-term responders ultimately progress and predictors of late progression are unknown. We hypothesized that circulating tumor DNA (ctDNA) analysis of long-term responders to PD-(L)1 blockade may differentiate those who will achieve ongoing benefit from those at risk of eventual progression. EXPERIMENTAL DESIGN: In patients with advanced NSCLC achieving long-term benefit from PD-(L)1 blockade (progression-free survival ≥ 12 months), plasma was collected at a surveillance timepoint late during/after treatment to interrogate ctDNA by Cancer Personalized Profiling by Deep Sequencing. Tumor tissue was available for 24 patients and was profiled by whole-exome sequencing (n = 18) or by targeted sequencing (n = 6). RESULTS: Thirty-one patients with NSCLC with long-term benefit to PD-(L)1 blockade were identified, and ctDNA was analyzed in surveillance blood samples collected at a median of 26.7 months after initiation of therapy. Nine patients also had baseline plasma samples available, and all had detectable ctDNA prior to therapy initiation. At the surveillance timepoint, 27 patients had undetectable ctDNA and 25 (93%) have remained progression-free; in contrast, all 4 patients with detectable ctDNA eventually progressed [Fisher P < 0.0001; positive predictive value = 1, 95% confidence interval (CI), 0.51-1; negative predictive value = 0.93 (95% CI, 0.80-0.99)]. CONCLUSIONS: ctDNA analysis can noninvasively identify minimal residual disease in patients with long-term responses to PD-(L)1 blockade and predict the risk of eventual progression. If validated, ctDNA surveillance may facilitate personalization of the duration of immune checkpoint blockade and enable early intervention in patients at high risk for progression.


Subject(s)
Antineoplastic Agents, Immunological/adverse effects , B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/drug therapy , Circulating Tumor DNA/blood , Drug-Related Side Effects and Adverse Reactions/diagnosis , Lung Neoplasms/drug therapy , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/genetics , Disease Progression , Drug-Related Side Effects and Adverse Reactions/blood , Drug-Related Side Effects and Adverse Reactions/etiology , Follow-Up Studies , Humans , Lung Neoplasms/pathology , Prognosis
12.
Lab Invest ; 89(5): 597-606, 2009 May.
Article in English | MEDLINE | ID: mdl-19290006

ABSTRACT

Global micro-RNA (miR) profiling of human malignancies is increasingly performed, but to date, the majority of such analyses have used frozen tissues. However, formalin fixation is the standard and routine histological practice for optimal preservation of cellular morphology. To determine whether miR analysis of formalin-fixed tissues is feasible, quantitative real-time PCR (qRT-PCR) profiling of miR expression in 40 archival formalin-fixed paraffin-embedded (FFPE) breast lumpectomy specimens were performed. Taqman Low Density Arrays (TLDAs) were used to assess the expression level of 365 miRs in 34 invasive ductal carcinomas and in 6 normal comparators derived from reduction mammoplasties. Its technical reproducibility was high, with intra-sample correlations above 0.9 and with 92.8% accuracy in differential expression comparisons, indicating such global profiling studies to be technically and biologically robust. The TLDA data were confirmed using conventional single-well qRT-PCR analysis, showing a strong and statistically significant concordance between these two methods. Paired frozen and FFPE breast cancer samples from the same patients showed a similar level of robust correlation of at least 0.94. Compared with normal breast samples, a panel of miRs was consistently dysregulated in breast cancer, including earlier-reported breast cancer-related miRs, such as upregulated miR-21, miR-155, miR-191, and miR-196a, and downregulated miR-125b and miR-221. Additional novel miR sequences of potential biological relevance were also uncovered. These results show the validity and utility of conducting global miR profiling using FFPE samples, thereby offering enormous opportunities to evaluate archival banks of such materials, linked to clinical databases, to rapidly acquire greater insight into the clinically relevant role for miRs in human malignancies.


Subject(s)
Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , MicroRNAs/metabolism , Microarray Analysis/standards , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Middle Aged , Paraffin Embedding , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction
13.
Clin Cancer Res ; 14(15): 4891-7, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18676763

ABSTRACT

PURPOSE: Nasopharyngeal carcinoma (NPC) is a malignancy of the head and neck region that is associated with EBV latency. Curative treatments for NPC achieve modest survival rates, underscoring a need to develop novel therapies. We evaluated the therapeutic potential of a mutant vesicular stomatitis virus (VSVDelta51) as single treatment modality or in combination with ionizing radiation (RT) in NPC. EXPERIMENTAL DESIGN: MTS assay was used to assess cell viability in vitro; apoptosis was measured using propidium iodide staining and caspase activation. In vivo experiments were conducted using tumor-bearing nude mice with or without local RT (4 Gy). Apoptosis was assessed in excised tumor sections with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. RESULTS: Our data showed that NPC cells are exquisitely sensitive to VSVDelta51 oncolysis, which correlated with the presence of EBV. Efficacy of VSVDelta51 against NPC cells was further augmented when combined with RT. A single systemic injection of VSVDelta51 achieved 50% survival in treated mice, which increased to 83% when combined with local tumor RT. In addition to induction of apoptosis, an antiangiogenic effect of VSVDelta51 was observed in vivo, suggesting a novel tumoricidal mechanism for VSVDelta51. This virus also prevented growth of NPC sphere-forming cells in vitro, showing potential utility in targeting NPC-initiating cells. CONCLUSIONS: Our data represent the first report showing that EBV-positive NPC cells are exquisitely sensitive to VSVDelta51 oncolysis and documenting the successful utilization of this combinatorial regimen as a novel curative therapeutic strategy for NPC.


Subject(s)
Carcinoma/therapy , Mutation , Nasopharyngeal Neoplasms/therapy , Vesiculovirus/metabolism , Animals , Apoptosis , Carcinoma/radiotherapy , Cell Line, Tumor , Cell Survival , Combined Modality Therapy/methods , Humans , Male , Mice , Mice, Nude , Nasopharyngeal Neoplasms/radiotherapy , Neoplasm Transplantation , Treatment Outcome , Vesiculovirus/genetics
14.
Nat Commun ; 10(1): 5712, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836708

ABSTRACT

The functional role of U2AF1 mutations in lung adenocarcinomas (LUADs) remains incompletely understood. Here, we report a significant co-occurrence of U2AF1 S34F mutations with ROS1 translocations in LUADs. To characterize this interaction, we profiled effects of S34F on the transcriptome-wide distribution of RNA binding and alternative splicing in cells harboring the ROS1 translocation. Compared to its wild-type counterpart, U2AF1 S34F preferentially binds and modulates splicing of introns containing CAG trinucleotides at their 3' splice junctions. The presence of S34F caused a shift in cross-linking at 3' splice sites, which was significantly associated with alternative splicing of skipped exons. U2AF1 S34F induced expression of genes involved in the epithelial-mesenchymal transition (EMT) and increased tumor cell invasion. Finally, S34F increased splicing of the long over the short SLC34A2-ROS1 isoform, which was also associated with enhanced invasiveness. Taken together, our results suggest a mechanistic interaction between mutant U2AF1 and ROS1 in LUAD.


Subject(s)
Adenocarcinoma of Lung/genetics , Alternative Splicing/genetics , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Splicing Factor U2AF/genetics , Adenocarcinoma of Lung/pathology , Animals , Biopsy , Epithelial-Mesenchymal Transition/genetics , Exons , Gene Expression Regulation, Neoplastic , Humans , Lung/pathology , Lung Neoplasms/pathology , Mice , Mutation , NIH 3T3 Cells , Neoplasm Invasiveness/genetics , Protein Isoforms/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics , Splicing Factor U2AF/metabolism
15.
Clin Cancer Res ; 11(13): 4707-16, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-16000565

ABSTRACT

PURPOSE: The aim of this study is to comprehensively characterize genome copy number aberrations in medulloblastomas using high-resolution array comparative genomic hybridization. EXPERIMENTAL DESIGN: High-density genomic arrays containing 1,803 BAC clones were used to define recurrent chromosomal regions of gains or losses throughout the whole genome of medulloblastoma. A series of 3 medulloblastoma cell lines and 16 primary tumors were investigated. RESULTS: The detected consistent chromosomal aberrations included gains of 1q21.3-q23.1 (36.8%), 1q32.1 (47.4%), 2p23.1-p25.3 (52.6%), 7 (57.9%), 9q34.13-q34.3 (47.4%), 17p11.2-q25.3 (89.5%), and 20q13.31-q13.33 (42.1%), as well as losses of 3q26.1 (57.9%), 4q31.23-q32.3 (42.1%), 6q23.1-25.3 (57.9%), 8p22-23.3 (79%), 10q24.32-26.2 (57.9%), and 16q23.2-q24.3 (63.2%). One of the most notable aberrations was a homozygous deletion on chromosome 6q23 in the cell line DAOY, and single copy loss on 30.3% primary tumors. Further analyses defined a 0.887 Mbp minimal region of homozygous deletion at 6q23.1 flanked by markers SHGC-14149 (6q22.33) and SHGC-110551 (6q23.1). Quantitative reverse transcription-PCR analysis showed complete loss of expression of two genes located at 6q23.1, AK091351 (hypothetical protein FLJ34032) and KIAA1913, in the cell line DAOY. mRNA levels of these genes was reduced in cell lines D283 and D384, and in 50% and 70% of primary tumors, respectively. CONCLUSION: Current array comparative genomic hybridization analysis generates a comprehensive pattern of chromosomal aberrations in medulloblastomas. This information will lead to a better understanding of medulloblastoma tumorigenesis. The delineated regions of gains or losses will indicate locations of medulloblastoma-associated genes. A 0.887 Mbp homozygous deletion region was newly identified at 6q23.1. Frequent detection of reduced expression of AK091351 and KIAA1913 genes implicates them as suppressors of medulloblastoma tumorigenesis.


Subject(s)
Cerebellar Neoplasms/genetics , Chromosome Deletion , Chromosomes, Human, Pair 6/genetics , Medulloblastoma/genetics , Nucleic Acid Hybridization/methods , Adolescent , Adult , Cell Line, Tumor , Cerebellar Neoplasms/pathology , Child , Child, Preschool , Female , Gene Deletion , Gene Expression Regulation, Neoplastic , Genome, Human , Homozygote , Humans , In Situ Hybridization, Fluorescence , Male , Medulloblastoma/pathology , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Proteins/genetics
16.
PLoS One ; 10(4): e0123946, 2015.
Article in English | MEDLINE | ID: mdl-25880806

ABSTRACT

Cervical cancer remains the third most frequently diagnosed and fourth leading cause of cancer death in women worldwide. We sought to develop a micro-RNA signature that was prognostic for disease-free survival, which could potentially allow tailoring of treatment for cervical cancer patients. A candidate prognostic 9-micro-RNA signature set was identified in the training set of 79 frozen specimens. However, three different approaches to validate this signature in an independent cohort of 87 patients with formalin-fixed paraffin-embedded (FFPE) specimens, were unsuccessful. There are several challenges and considerations associated with developing a prognostic micro-RNA signature for cervical cancer, namely: tumour heterogeneity, lack of concordance between frozen and FFPE specimens, and platform selection for global micro-RNA expression profiling in this disease. Our observations provide an important cautionary tale for future miRNA signature studies for cervical cancer, which can also be potentially applicable to miRNA profiling studies involving other types of human malignancies.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/mortality , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Gene Expression Profiling/methods , Humans , Middle Aged , Paraffin Embedding , Prognosis , Reproducibility of Results , Uterine Cervical Neoplasms/pathology , Young Adult
17.
Oncotarget ; 6(6): 4537-50, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25738365

ABSTRACT

PURPOSE: Despite significant improvement in locoregional control in the contemporary era of nasopharyngeal carcinoma (NPC) treatment, patients still suffer from a significant risk of distant metastasis (DM). Identifying those patients at risk of DM would aid in personalized treatment in the future. MicroRNAs (miRNAs) play many important roles in human cancers; hence, we proceeded to address the primary hypothesis that there is a miRNA expression signature capable of predicting DM for NPC patients. METHODS AND RESULTS: The expression of 734 miRNAs was measured in 125 (Training) and 121 (Validation) clinically annotated NPC diagnostic biopsy samples. A 4-miRNA expression signature associated with risk of developing DM was identified by fitting a penalized Cox Proportion Hazard regression model to the Training data set (HR 8.25; p < 0.001), and subsequently validated in an independent Validation set (HR 3.2; p = 0.01). Pathway enrichment analysis indicated that the targets of miRNAs associated with DM appear to be converging on cell-cycle pathways. CONCLUSIONS: This 4-miRNA signature adds to the prognostic value of the current "gold standard" of TNM staging. In-depth interrogation of these 4-miRNAs will provide important biological insights that could facilitate the discovery and development of novel molecularly targeted therapies to improve outcome for future NPC patients.


Subject(s)
MicroRNAs/analysis , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Transcriptome , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , Carcinoma , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Nasopharyngeal Carcinoma , ROC Curve , Young Adult
18.
Cancer Genet Cytogenet ; 140(2): 124-32, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12645650

ABSTRACT

Nasopharyngeal carcinoma (NPC) cell lines and xenografts represent valuable models for functional and therapeutic studies on this common malignancy in Southeast Asia. The karyotypic information in most NPC cell lines and xenografts, however, remains largely unclear to date. We have characterized the chromosomal aberrations in six commonly used human NPC cell lines and xenografts using the molecular cytogenetic technique of comparative genomic hybridization (CGH). Genomic imbalances identified in cell lines were further correlated with structural abnormalities indicated from spectral karyotyping (SKY) analysis. CGH revealed consistent overrepresentations of 8q (six out of six cases) with a smallest overlapping region identified on 8q21.1 approximately q22. Other common gains included 7p (4/6 cases), 7q (4/6 cases), 12q (4/6), and 20q (4/6 cases), where minimal overlapping regions were suggested on 7p15 approximately p14, 7q11.2 approximately q21, and 12q22 approximately q24.1. Common losses were detected on 3p12 approximately p21 (4/6 cases) and 11q14 approximately qter (4/6 cases). Although SKY analysis on cell lines revealed predominantly unbalanced rearrangements, reciprocal translocations that involved chromosome 2 [i.e., t(1;2), t(2;3), and t(2;4)] were suggested. Furthermore, SKY examination illustrated additional breakpoints on a number of apparently balanced chromosomes. These breakpoints included 3p21, 3q26, 5q31, 6p21.1 approximately p25, 7p14 approximately p22, and 8q22. Our finding of regional gains and losses and breakpoints represents information that may contribute to NPC studies in vitro.


Subject(s)
Aneuploidy , Carcinoma/genetics , Chromosome Aberrations , Nasopharyngeal Neoplasms/genetics , Animals , Carcinoma/pathology , Chromosome Painting , Chromosomes, Human/genetics , Chromosomes, Human/ultrastructure , Female , Humans , Karyotyping , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Nasopharyngeal Neoplasms/pathology , Nucleic Acid Hybridization , Translocation, Genetic , Transplantation, Heterologous , Tumor Cells, Cultured/pathology , Tumor Cells, Cultured/transplantation
19.
J Neurosurg ; 100(2 Suppl Pediatrics): 187-93, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14758948

ABSTRACT

OBJECT: Few studies have been conducted to investigate the genomic survey of oncogene amplification in medulloblastoma. Low frequency of N-myc, C-myc, and epidermal grow factor receptor (EGFR) gene amplification (< 10%) has been reported in medulloblastoma. Previous comparative genomic hybridization (CGH) study of primary medulloblastomas has revealed chromosomal amplification on 2p21, 3p, 5p15.3, 7q, 8q24, 11q22.3, and 17q. The aim of this study was to detect common oncogenes involved in medulloblastoma tumorigenesis. METHODS: The authors studied a series of 14 samples by performing CGH and array-based CGH. The CGH analysis detected nonrandom losses on 8p, 17p, 16q, 8q, and 1p, whereas gains were found on 17q, 12q, 7q, and 1p. Array-based CGH was conducted to investigate amplification of 58 oncogenes throughout the genome of these samples. Gene amplifications identified for the first time included PGY1 at 7q21.1, MDM2 at 12q14.3-q15, and ERBB2 at 17q21.2. The highest frequencies of oncogene gain were detected in D17S1670 (61.5%), PIK3CA (46.2%), PGY1 (38.5%), MET (38.5%), ERBB2 (38.5%), and CSE1L (38.5%). The gain in gene copy numbers was confirmed in 34 additional archival medulloblastoma cases by using fluorescence in situ hybridization analysis. CONCLUSIONS: This is the first genome-wide survey of multiple oncogene amplifications involved in the development of medulloblastoma. Gains of several candidate oncogenes such as D17S1670, ERBB2, PIK3CA, PGY1, MET, and CSE1L were frequently detected. These genes may be used as molecular markers and therapeutic targets of medulloblastomas.


Subject(s)
Cerebellar Neoplasms/genetics , Gene Amplification/genetics , Gene Expression Profiling , In Situ Hybridization, Fluorescence , Medulloblastoma/genetics , Oligonucleotide Array Sequence Analysis , Oncogenes/genetics , Adolescent , Adult , Blotting, Western , Cerebellar Neoplasms/surgery , Child , Child, Preschool , DNA, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/physiology , Gene Frequency/genetics , Genetic Markers/genetics , Humans , In Situ Nick-End Labeling , Male , Medulloblastoma/surgery , Nucleic Acid Hybridization
20.
PLoS One ; 8(1): e53765, 2013.
Article in English | MEDLINE | ID: mdl-23335975

ABSTRACT

Despite improvements in therapeutic approaches for head and neck squamous cell carcinomas (HNSCC), clinical outcome has remained disappointing, with 5-year overall survival rates hovering around 40-50%, underscoring an urgent need to better understand the biological bases of this disease. We chose to address this challenge by studying the role of micro-RNAs (miRNAs) in HNSCC. MiR-193b was identified as an over-expressed miRNA from global miRNA profiling studies previously conducted in our lab, and confirmed in HNSCC cell lines. In vitro knockdown of miR-193b in FaDu cancer cells substantially reduced cell proliferation, migration and invasion, along with suppressed tumour formation in vivo. By integrating in silico prediction algorithms with in vitro experimental mRNA profilings, plus mRNA expression data of clinical specimens, neurofibromin 1 (NF1) was identified to be a target of miR-193b. Concordantly, miR-193b knockdown decreased NF1 transcript and protein levels significantly. Luciferase reporter assays confirmed the direct interaction of miR-193b with NF1. Moreover, p-ERK, a downstream target of NF1 was also suppressed after miR-193b knockdown. FaDu cells treated with a p-ERK inhibitor (U0126) phenocopied the reduced cell proliferation, migration and invasion observed with miR-193b knockdown. Finally, HNSCC patients whose tumours expressed high levels of miR-193b experienced a lower disease-free survival compared to patients with low miR-193b expression. Our findings identified miR-193b as a potentially novel prognostic marker in HNSCC that drives tumour progression via down-regulating NF1, in turn leading to activation of ERK, resulting in proliferation, migration, invasion, and tumour formation.


Subject(s)
Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , MicroRNAs/genetics , Neurofibromin 1/genetics , Animals , Carcinoma, Squamous Cell/mortality , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Disease Progression , Down-Regulation , Extracellular Signal-Regulated MAP Kinases/genetics , Female , Genes, Tumor Suppressor , Head and Neck Neoplasms/mortality , Humans , Mice , Models, Biological , Prognosis , Squamous Cell Carcinoma of Head and Neck
SELECTION OF CITATIONS
SEARCH DETAIL