Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Immunity ; 43(1): 200-9, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26163370

ABSTRACT

Targeted mutagenesis in mice is a powerful tool for functional analysis of genes. However, genetic variation between embryonic stem cells (ESCs) used for targeting (previously almost exclusively 129-derived) and recipient strains (often C57BL/6J) typically results in congenic mice in which the targeted gene is flanked by ESC-derived passenger DNA potentially containing mutations. Comparative genomic analysis of 129 and C57BL/6J mouse strains revealed indels and single nucleotide polymorphisms resulting in alternative or aberrant amino acid sequences in 1,084 genes in the 129-strain genome. Annotating these passenger mutations to the reported genetically modified congenic mice that were generated using 129-strain ESCs revealed that nearly all these mice possess multiple passenger mutations potentially influencing the phenotypic outcome. We illustrated this phenotypic interference of 129-derived passenger mutations with several case studies and developed a Me-PaMuFind-It web tool to estimate the number and possible effect of passenger mutations in transgenic mice of interest.


Subject(s)
Genetic Variation/genetics , Genome/genetics , Mice, Inbred C57BL/genetics , Amino Acid Sequence/genetics , Animals , Caspases/genetics , Caspases, Initiator , Chromosome Mapping , Comparative Genomic Hybridization , Connexins/genetics , Genotype , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 8/genetics , Mice , Mice, Congenic/genetics , Mice, Knockout , Mutation/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide
2.
Cell Mol Life Sci ; 80(10): 285, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37688617

ABSTRACT

The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.


Subject(s)
Keratinocytes , Skin , Phylogeny , Mitogen-Activated Protein Kinases , Protein Serine-Threonine Kinases/genetics
3.
Mar Drugs ; 21(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37623730

ABSTRACT

BACKGROUND: The marine environment hosts the vast majority of living species and marine microbes that produce natural products with great potential in providing lead compounds for drug development. With over 70% of Earth's surface covered in water and the high interaction rate associated with liquid environments, this has resulted in many marine natural product discoveries. Our improved understanding of the biosynthesis of these molecules, encoded by gene clusters, along with increased genomic information will aid us in uncovering even more novel compounds. RESULTS: We introduce MariClus (https://www.mariclus.com), an online user-friendly platform for mining and visualizing marine gene clusters. The first version contains information on clusters and the predicted molecules for over 500 marine-related prokaryotes. The user-friendly interface allows scientists to easily search by species, cluster type or molecule and visualize the information in table format or graphical representation. CONCLUSIONS: This new online portal simplifies the exploration and comparison of gene clusters in marine species for scientists and assists in characterizing the bioactive molecules they produce. MariClus integrates data from public sources, like GenBank, MIBiG and PubChem, with genome mining results from antiSMASH. This allows users to access and analyze various aspects of marine natural product biosynthesis and diversity.


Subject(s)
Biological Products , Multigene Family , Drug Development , Genomics , Prokaryotic Cells
4.
Mar Drugs ; 20(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35049861

ABSTRACT

The marine environment is an excellent resource for natural products with therapeutic potential. Its microbial inhabitants, often associated with other marine organisms, are specialized in the synthesis of bioactive secondary metabolites. Similar to their terrestrial counterparts, marine Actinobacteria are a prevalent source of these natural products. Here, we discuss 77 newly discovered alkaloids produced by such marine Actinobacteria between 2017 and mid-2021, as well as the strategies employed in their elucidation. While 12 different classes of alkaloids were unraveled, indoles, diketopiperazines, glutarimides, indolizidines, and pyrroles were most dominant. Discoveries were mainly based on experimental approaches where microbial extracts were analyzed in relation to novel compounds. Although such experimental procedures have proven useful in the past, the methodologies need adaptations to limit the chance of compound rediscovery. On the other hand, genome mining provides a different angle for natural product discovery. While the technology is still relatively young compared to experimental screening, significant improvement has been made in recent years. Together with synthetic biology tools, both genome mining and extract screening provide excellent opportunities for continued drug discovery from marine Actinobacteria.


Subject(s)
Actinobacteria , Alkaloids/pharmacology , Alkaloids/chemistry , Animals , Aquatic Organisms , Drug Discovery
5.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639054

ABSTRACT

The protease activity in inflammatory bowel disease (IBD) and irritable bowel syndrome has been studied extensively using synthetic fluorogenic substrates targeting specific sets of proteases. We explored activities in colonic tissue from a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model by investigating the cleavage of bioactive peptides. Pure trypsin- and elastase-like proteases on the one hand and colonic tissue from rats with TNBS-induced colitis in the acute or post-inflammatory phase on the other, were incubated with relevant peptides to identify their cleavage pattern by mass spectrometry. An increased cleavage of several peptides was observed in the colon from acute colitis rats. The tethered ligand (TL) sequences of peptides mimicking the N-terminus of protease-activated receptors (PAR) 1 and 4 were significantly unmasked by acute colitis samples and these cleavages were positively correlated with thrombin activity. Increased cleavage of ß-endorphin and disarming of the TL-sequence of the PAR3-based peptide were observed in acute colitis and linked to chymotrypsin-like activity. Increased processing of the enkephalins points to the involvement of proteases with specificities different from trypsin- or chymotrypsin-like enzymes. In conclusion, our results suggest thrombin, chymotrypsin-like proteases and a set of proteases with different specificities as potential therapeutic targets in IBD.


Subject(s)
Colitis/metabolism , Peptides/metabolism , Receptors, Proteinase-Activated/metabolism , Amino Acid Sequence , Animals , Biomarkers , Colitis/etiology , Colitis/pathology , Disease Models, Animal , Disease Susceptibility , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Male , Peptides/chemistry , Proteolysis , Rats , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Glycobiology ; 30(9): 735-745, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32149359

ABSTRACT

The deoxy sugar l-fucose is frequently found as a glycan constituent on and outside living cells, and in mammals it is involved in a wide range of biological processes including leukocyte trafficking, histo-blood group antigenicity and antibody effector functions. The manipulation of fucose levels in those biomedically important systems may provide novel insights and therapeutic leads. However, despite the large established sequence diversity of natural fucosidases, so far, very few enzymes have been characterized. We explored the diversity of the α-l-fucosidase-containing CAZY family GH29 by bio-informatic analysis, and by the recombinant production and exploration for fucosidase activity of a subset of 82 protein sequences that represent the family's large sequence diversity. After establishing that most of the corresponding proteins can be readily expressed in E. coli, more than half of the obtained recombinant proteins (57% of the entire subset) showed activity towards the simple chromogenic fucosylated substrate 4-nitrophenyl α-l-fucopyranoside. Thirty-seven of these active GH29 enzymes (and the GH29 subtaxa that they represent) had not been characterized before. With such a sequence diversity-based collection available, it can easily be used to screen for fucosidase activity towards biomedically relevant fucosylated glycoproteins. As an example, the subset was used to screen GH29 members for activity towards the naturally occurring sialyl-Lewis x-type epitope on glycoproteins, and several such enzymes were identified. Together, the results provide a significant increase in the diversity of characterized GH29 enzymes, and the recombinant enzymes constitute a resource for the further functional exploration of this enzyme family.


Subject(s)
alpha-L-Fucosidase/metabolism , Humans , Polysaccharides/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , alpha-L-Fucosidase/chemistry , alpha-L-Fucosidase/isolation & purification
7.
Blood ; 129(4): 460-472, 2017 01 26.
Article in English | MEDLINE | ID: mdl-27683414

ABSTRACT

Epithelial-to-mesenchymal-transition (EMT) is critical for normal embryogenesis and effective postnatal wound healing, but is also associated with cancer metastasis. SNAIL, ZEB, and TWIST families of transcription factors are key modulators of the EMT process, but their precise roles in adult hematopoietic development and homeostasis remain unclear. Here we report that genetic inactivation of Zeb2 results in increased frequency of stem and progenitor subpopulations within the bone marrow (BM) and spleen and that these changes accompany differentiation defects in multiple hematopoietic cell lineages. We found no evidence that Zeb2 is critical for hematopoietic stem cell self-renewal capacity. However, knocking out Zeb2 in the BM promoted a phenotype with several features that resemble human myeloproliferative disorders, such as BM fibrosis, splenomegaly, and extramedullary hematopoiesis. Global gene expression and intracellular signal transduction analysis revealed perturbations in specific cytokine and cytokine receptor-related signaling pathways following Zeb2 loss, especially the JAK-STAT and extracellular signal-regulated kinase pathways. Moreover, we detected some previously unknown mutations within the human Zeb2 gene (ZFX1B locus) from patients with myeloid disease. Collectively, our results demonstrate that Zeb2 controls adult hematopoietic differentiation and lineage fidelity through widespread modulation of dominant signaling pathways that may contribute to blood disorders.


Subject(s)
Cytokines/genetics , Epithelial-Mesenchymal Transition/genetics , Hematopoiesis, Extramedullary/genetics , Homeodomain Proteins/genetics , Primary Myelofibrosis/genetics , Repressor Proteins/genetics , Splenomegaly/genetics , Adult , Animals , Base Sequence , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Differentiation , Cell Lineage/genetics , Cytokines/metabolism , Gene Expression Regulation , Humans , Janus Kinases/genetics , Janus Kinases/metabolism , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , Primary Myelofibrosis/metabolism , Primary Myelofibrosis/pathology , Repressor Proteins/deficiency , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Spleen/metabolism , Spleen/pathology , Splenomegaly/metabolism , Splenomegaly/pathology , Stem Cells/metabolism , Stem Cells/pathology , Transcription, Genetic , Zinc Finger E-box Binding Homeobox 2
8.
Cell Mol Life Sci ; 75(11): 1929-1946, 2018 06.
Article in English | MEDLINE | ID: mdl-29397397

ABSTRACT

The hallmark of Nanos proteins is their typical (CCHC)2 zinc finger motif (zf-nanos). Animals have one to four nanos genes. For example, the fruit fly and demosponge have only one nanos gene, zebrafish and humans have three, and Fugu rubripes has four. Nanos genes are mainly known for their evolutionarily preserved role in germ cell survival and pluripotency. Nanos proteins have been reported to bind the C-terminal RNA-binding domain of Pumilio to form a post-transcriptional repressor complex. Several observations point to a link between the miRNA-mediated repression complex and the Nanos/Pumilio complex. Repression of the E2F3 oncogene product is, indeed, mediated by cooperation between the Nanos/Pumilio complex and miRNAs. Another important interaction partner of Nanos is the CCR4-NOT deadenylase complex. Besides the tissue-specific contribution of Nanos proteins to normal development, their ectopic expression has been observed in several cancer cell lines and various human cancers. An inverse correlation between the expression levels of human Nanos1 and Nanos3 and E-cadherin was observed in several cancer cell lines. Loss of E-cadherin, an important cell-cell adhesion protein, contributes to tumor invasion and metastasis. Overexpression of Nanos3 induces epithelial-mesenchymal transition in lung cancer cell lines partly by repressing E-cadherin. Other than some most interesting data from Nanos knockout mice, little is known about mammalian Nanos proteins, and further research is needed. In this review, we summarize the main roles of Nanos proteins and discuss the emerging concept of Nanos proteins as oncofetal antigens.


Subject(s)
Gene Expression Regulation, Developmental , Genomics , Protein Interaction Maps , RNA-Binding Proteins/genetics , Amino Acid Sequence , Animals , Genomics/methods , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phylogeny , RNA-Binding Proteins/analysis , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers
9.
Nucleic Acids Res ; 45(W1): W490-W494, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28472390

ABSTRACT

Transcription factors are important gene regulators with distinctive roles in development, cell signaling and cell cycling, and they have been associated with many diseases. The ConTra v3 web server allows easy visualization and exploration of predicted transcription factor binding sites (TFBSs) in any genomic region surrounding coding or non-coding genes. In this updated version, with a completely re-implemented user interface using latest web technologies, users can choose from nine reference organisms ranging from human to yeast. ConTra v3 can analyze promoter regions, 5΄-UTRs, 3΄-UTRs and introns or any other genomic region of interest. Thousands of position weight matrices are available to choose from for detecting specific binding sites. Besides this visualization option, additional new exploration functionality is added to the tool that will automatically detect TFBSs having at the same time the highest regulatory potential, the highest conservation scores of the genomic regions covered by the predicted TFBSs and strongest co-localizations with genomic regions exhibiting regulatory activity. The ConTra v3 web server is freely available at http://bioit2.irc.ugent.be/contra/v3.


Subject(s)
Software , Transcription Factors/metabolism , Binding Sites , Genomics , Humans , Interleukin-2/genetics , Internet
10.
Proc Natl Acad Sci U S A ; 113(20): 5670-5, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27147605

ABSTRACT

Genetic polymorphisms in coding genes play an important role when using mouse inbred strains as research models. They have been shown to influence research results, explain phenotypical differences between inbred strains, and increase the amount of interesting gene variants present in the many available inbred lines. SPRET/Ei is an inbred strain derived from Mus spretus that has ∼1% sequence difference with the C57BL/6J reference genome. We obtained a listing of all SNPs and insertions/deletions (indels) present in SPRET/Ei from the Mouse Genomes Project (Wellcome Trust Sanger Institute) and processed these data to obtain an overview of all transcripts having nonsynonymous coding sequence variants. We identified 8,883 unique variants affecting 10,096 different transcripts from 6,328 protein-coding genes, which is about 28% of all coding genes. Because only a subset of these variants results in drastic changes in proteins, we focused on variations that are nonsense mutations that ultimately resulted in a gain of a stop codon. These genes were identified by in silico changing the C57BL/6J coding sequences to the SPRET/Ei sequences, converting them to amino acid (AA) sequences, and comparing the AA sequences. All variants and transcripts affected were also stored in a database, which can be browsed using a SPRET/Ei M. spretus variants web tool (www.spretus.org), including a manual. We validated the tool by demonstrating the loss of function of three proteins predicted to be severely truncated, namely Fas, IRAK2, and IFNγR1.


Subject(s)
Codon, Nonsense , Mice, Inbred Strains/genetics , Polymorphism, Single Nucleotide , Animals , Gene Ontology , Interleukin-1 Receptor-Associated Kinases/physiology , Mice , Mice, Inbred C57BL , Receptors, Interferon/physiology , fas Receptor/physiology , Interferon gamma Receptor
11.
Exp Cell Res ; 358(1): 3-9, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28268172

ABSTRACT

Cadherin genes encode a superfamily of conserved transmembrane proteins that share an adhesive ectodomain composed of tandem cadherin repeats. More than 100 human cadherin superfamily members have been identified, which can be classified into three families: major cadherins, protocadherins and cadherin-related proteins. These superfamily members are involved in diverse fundamental cellular processes including cell-cell adhesion, morphogenesis, cell recognition and signaling. Epithelial cadherin (E-cadherin) is the founding cadherin family member. Its cytoplasmic tail interacts with the armadillo catenins, p120 and ß-catenin. Further, α-catenin links the cadherin/armadillo catenin complex to the actin filament network. Even genomes of ancestral metazoan species such as cnidarians and placozoans encode a limited number of distinct cadherins and catenins, emphasizing the conservation and functional importance of these gene families. Moreover, a large expansion of the cadherin and catenin families coincides with the emergence of vertebrates and reflects a major functional diversification in higher metazoans. Here, we revisit and review the functions, phylogenetic classifications and co-evolution of the cadherin and catenin protein families.


Subject(s)
Cadherins/metabolism , Catenins/metabolism , Cell Adhesion/physiology , Cell Membrane/metabolism , Cytoskeletal Proteins/metabolism , Animals , Humans , Morphogenesis/physiology
12.
Cell Mol Life Sci ; 74(3): 525-541, 2017 02.
Article in English | MEDLINE | ID: mdl-27497926

ABSTRACT

The superfamily of armadillo repeat proteins is a fascinating archetype of modular-binding proteins involved in various fundamental cellular processes, including cell-cell adhesion, cytoskeletal organization, nuclear import, and molecular signaling. Despite their diverse functions, they all share tandem armadillo (ARM) repeats, which stack together to form a conserved three-dimensional structure. This superhelical armadillo structure enables them to interact with distinct partners by wrapping around them. Despite the important functional roles of this superfamily, a comprehensive analysis of the composition, classification, and phylogeny of this protein superfamily has not been reported. Furthermore, relatively little is known about a subset of ARM proteins, and some of the current annotations of armadillo repeats are incomplete or incorrect, often due to high similarity with HEAT repeats. We identified the entire armadillo repeat superfamily repertoire in the human genome, annotated each armadillo repeat, and performed an extensive evolutionary analysis of the armadillo repeat proteins in both metazoan and premetazoan species. Phylogenetic analyses of the superfamily classified them into several discrete branches with members showing significant sequence homology, and often also related functions. Interestingly, the phylogenetic structure of the superfamily revealed that about 30 % of the members predate metazoans and represent an ancient subset, which is gradually evolving to acquire complex and highly diverse functions.


Subject(s)
Armadillo Domain Proteins/genetics , Phylogeny , Amino Acid Sequence , Animals , Armadillo Domain Proteins/chemistry , Armadillo Domain Proteins/classification , Armadillo Domain Proteins/metabolism , Biological Evolution , Evolution, Molecular , Humans , Models, Molecular , Protein Conformation , Sequence Alignment
13.
Mol Ther ; 24(5): 890-902, 2016 05.
Article in English | MEDLINE | ID: mdl-26775809

ABSTRACT

A detrimental role for matrix metalloproteinase 8 (MMP8) has been identified in several pathological conditions, e.g., lethal hepatitis and the systemic inflammatory response syndrome. Since matrix MMP8-deficient mice are protected in the above-mentioned diseases, specific MMP8 inhibitors could be of clinical value. However, targeting a specific matrix metalloproteinase remains challenging due to the strong structural homology of matrix metalloproteinases, which form a family of 25 members in mammals. Single-domain antibodies, called nanobodies, offer a range of possibilities toward therapy since they are easy to generate, express, produce, and modify, e.g., by linkage to nanobodies directed against other target molecules. Hence, we generated small MMP8-binding nanobodies, and established a proof-of-principle for developing nanobodies that inhibit matrix metalloproteinase activity. Also, we demonstrated for the first time the possibility of expressing nanobodies systemically by in vivo electroporation of the muscle and its relevance as a potential therapy in inflammatory diseases.


Subject(s)
Inflammation/drug therapy , Matrix Metalloproteinase 8/metabolism , Matrix Metalloproteinase Inhibitors/administration & dosage , Single-Domain Antibodies/administration & dosage , Animals , Disease Models, Animal , Electroporation , Inflammation/chemically induced , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/therapeutic use , Mice , Mice, Knockout , Molecular Docking Simulation , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/therapeutic use
14.
Cell Mol Life Sci ; 73(5): 1103-16, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26377317

ABSTRACT

Paracaspases and metacaspases are two families of caspase-like proteins identified in 2000. Up until now paracaspases were considered a single gene family with one known non-metazoan paracaspase in the slime mold Dictyostelium and a single animal paracaspase called MALT1. Human MALT1 is a critical signaling component in many innate and adaptive immunity pathways that drive inflammation, and when it is overly active, it can also cause certain forms of cancer. Here, we report the identification and functional analysis of two new vertebrate paracaspases, PCASP2 and PCASP3. Functional characterization indicates that both scaffold and protease functions are conserved across the three vertebrate paralogs. This redundancy might explain the loss of two of the paralogs in mammals and one in Xenopus. Several of the vertebrate paracaspases currently have incorrect or ambiguous annotations. We propose to annotate them accordingly as PCASP1, PCASP2, and PCASP3 similar to the caspase gene nomenclature. A comprehensive search in other metazoans and in non-metazoan species identified additional new paracaspases. We also discovered the first animal metacaspase in the sponge Amphimedon. Comparative analysis of the active site suggests that paracaspases constitute one of the several subclasses of metacaspases that have evolved several times independently.


Subject(s)
Caspases/genetics , Neoplasm Proteins/genetics , Amino Acid Sequence , Animals , Caspases/chemistry , Catalytic Domain , Chickens , Gene Ontology , Humans , Molecular Sequence Data , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Neoplasm Proteins/chemistry , Phylogeny , Porifera , Sequence Alignment , Zebrafish
15.
J Biol Chem ; 290(7): 4022-37, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25538244

ABSTRACT

The cytokine TNF is a well known drug target for several inflammatory diseases such as Crohn disease. Despite the great success of TNF blockers, therapy could be improved because of high costs and side effects. Selective inhibition of TNF receptor (TNFR) 1 signaling holds the potential to greatly reduce the pro-inflammatory activity of TNF, thereby preserving the advantageous immunomodulatory signals mediated by TNFR2. We generated a selective human TNFR1 inhibitor based on Nanobody (Nb) technology. Two anti-human TNFR1 Nbs were linked with an anti-albumin Nb to generate Nb Alb-70-96 named "TNF Receptor-One Silencer" (TROS). TROS selectively binds and inhibits TNF/TNFR1 and lymphotoxin-α/TNFR1 signaling with good affinity and IC50 values, both of which are in the nanomolar range. Surface plasmon resonance analysis reveals that TROS competes with TNF for binding to human TNFR1. In HEK293T cells, TROS strongly reduces TNF-induced gene expression, like IL8 and TNF, in a dose-dependent manner; and in ex vivo cultured colon biopsies of CD patients, TROS inhibits inflammation. Finally, in liver chimeric humanized mice, TROS antagonizes inflammation in a model of acute TNF-induced liver inflammation, reflected in reduced human IL8 expression in liver and reduced IL6 levels in serum. These results demonstrate the considerable potential of TROS and justify the evaluation of TROS in relevant disease animal models of both acute and chronic inflammation and eventually in patients.


Subject(s)
Colon/drug effects , Crohn Disease/prevention & control , Inflammation/prevention & control , Liver/drug effects , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type I/immunology , Single-Domain Antibodies/pharmacology , Amino Acid Sequence , Animals , Colon/immunology , Colon/pathology , Crohn Disease/immunology , Crohn Disease/pathology , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Female , Humans , Inflammation/immunology , Inflammation/pathology , Liver/immunology , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, SCID , Molecular Sequence Data , Protein Conformation , Receptors, Tumor Necrosis Factor, Type I/metabolism , Sequence Homology, Amino Acid , Signal Transduction , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Surface Plasmon Resonance , Tumor Necrosis Factor-alpha/pharmacology
16.
Eur Heart J ; 34(3): 201-10, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23136403

ABSTRACT

AIMS: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a major cause of juvenile sudden death and is characterized by fibro-fatty replacement of the right ventricle. Mutations in several genes encoding desmosomal proteins have been identified in ARVC. We speculated that αT-catenin, encoded by CTNNA3, might also carry mutations in ARVC patients. Alpha-T-catenin binds plakophilins and this binding contributes to the formation of the area composita, which strengthens cell-cell adhesion in contractile cardiomyocytes. METHODS AND RESULTS: We used denaturing high-performance liquid chromatography and direct sequencing to screen CTNNA3 in 76 ARVC patients who did not carry any mutations in the desmosomal genes commonly mutated in ARVC. Mutations c.281T > A (p.V94D) and c.2293_2295delTTG (p.del765L) were identified in two probands. They are located in important domains of αT-catenin. Yeast two-hybrid and cell transfection studies showed that the interaction between the p.V94D mutant protein and ß-catenin was affected, whereas the p.del765L mutant protein showed a much stronger dimerization potential and formed aggresomes in HEK293T cells. CONCLUSION: These findings might point to a causal relationship between CTNNA3 mutations and ARVC. This first report on the involvement of an area composita gene in ARVC shows that the pathogenesis of this disease extends beyond desmosomes. Since the frequency of CTNNA3 mutations in ARVC patients is not rare, systematic screening for this gene should be considered to improve the clinical management of ARVC families.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/genetics , Death, Sudden, Cardiac/etiology , Gene Deletion , Mutation, Missense/genetics , alpha Catenin/genetics , Adult , Arrhythmias, Cardiac/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Case-Control Studies , Electrocardiography , Female , Heterozygote , Humans , Male , Pedigree , alpha Catenin/metabolism
17.
PLoS One ; 19(6): e0305650, 2024.
Article in English | MEDLINE | ID: mdl-38885212

ABSTRACT

Accurate DNA quantification is key for downstream application including library preparations for whole genome sequencing (WGS) and the quantification of standards for quantitative PCR. Two commonly used technologies for nucleic acid quantification are based on spectrometry, such as NanoDrop, and fluorometry, such as Qubit. The DS-11+ Series spectrophotometer/fluorometer (DeNovix) is a UV spectrophotometry-based instrument and is a relatively new spectrophotometric method but has not yet been compared to established platforms. Here, we compared three DNA quantification platforms, including two UV spectrophotometry-based techniques (DeNovix and NanoDrop) and one fluorometry-based approach (Qubit). We used genomic prokaryotic DNA extracted from Streptococcus pneumoniae using a Roche DNA extraction kit. We also evaluated purity assessment and effect of a single freeze-thaw cycle. Spectrophotometry-based methods reported 3 to 4-fold higher mean DNA concentrations compared to Qubit, both before and after freezing. The ratio of DNA concentrations assessed by spectrophotometry on the one hand, and Qubit on the other hand, was function of the A260/280. In case DNA was pure (A260/280 between 1.7 and 2.0), the ratio DeNovix or Nanodrop vs. Qubit was close or equal to 2, while this ratio showed an incline for DNA with increasing A260/280 values > 2.0. The A260/280 and A260/230 purity ratios exhibited negligible variation across spectrophotometric methods and freezing conditions. The comparison of DNA concentrations from before and after freezing revealed no statistically significant disparities for each technique. DeNovix exhibited the highest Spearman correlation coefficient (0.999), followed by NanoDrop (0.81), and Qubit (0.77). In summary, there is no difference between DeNovix and NanoDrop in estimated gDNA concentrations of S. pneumoniae, and the spectrophotometry methods estimated close or equal to 2 times higher concentrations compared to Qubit for pure DNA.


Subject(s)
DNA, Bacterial , Streptococcus pneumoniae , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Fluorometry/methods , Spectrophotometry, Ultraviolet/methods , Spectrophotometry/methods , Bacterial Lysates
18.
Acta Physiol (Oxf) ; 240(3): e14086, 2024 03.
Article in English | MEDLINE | ID: mdl-38240350

ABSTRACT

AIM: Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are intracellular Ca2+ -release channels with crucial roles in cell function. Current IP3 R inhibitors suffer from off-target effects and poor selectivity towards the three distinct IP3 R subtypes. We developed a novel peptide inhibitor of IP3 Rs and determined its effect on connexin-43 (Cx43) hemichannels, which are co-activated by IP3 R stimulation. METHODS: IP3RPEP6 was developed by in silico molecular docking studies and characterized by on-nucleus patch-clamp experiments of IP3 R2 channels and carbachol-induced IP3 -mediated Ca2+ responses in IP3 R1, 2 or 3 expressing cells, triple IP3 R KO cells and astrocytes. Cx43 hemichannels were studied by patch-clamp and ATP-release approaches, and by inhibition with Gap19 peptide. IP3RPEP6 interactions with IP3 Rs were verified by co-immunoprecipitation and affinity pull-down assays. RESULTS: IP3RPEP6 concentration-dependently reduced the open probability of IP3 R2 channels and competitively inhibited IP3 Rs in an IC50 order of IP3 R2 (~3.9 µM) < IP3 R3 (~4.3 µM) < IP3 R1 (~9.0 µM), without affecting Cx43 hemichannels or ryanodine receptors. IP3RPEP6 co-immunoprecipitated with IP3 R2 but not with IP3 R1; interaction with IP3 R3 varied between cell types. The IC50 of IP3RPEP6 inhibition of carbachol-induced Ca2+ responses decreased with increasing cellular Cx43 expression. Moreover, Gap19-inhibition of Cx43 hemichannels significantly reduced the amplitude of the IP3 -Ca2+ responses and strongly increased the EC50 of these responses. Finally, we identified palmitoyl-8G-IP3RPEP6 as a membrane-permeable IP3RPEP6 version allowing extracellular application of the IP3 R-inhibiting peptide. CONCLUSION: IP3RPEP6 inhibits IP3 R2/R3 at concentrations that have limited effects on IP3 R1. IP3 R activation triggers hemichannel opening, which strongly affects the amplitude and concentration-dependence of IP3 -triggered Ca2+ responses.


Subject(s)
Connexin 43 , Peptides , Molecular Docking Simulation , Carbachol/pharmacology , Peptides/pharmacology , Peptides/metabolism , Astrocytes/metabolism
19.
Cell Mol Life Sci ; 69(15): 2527-41, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22349261

ABSTRACT

ZEB1 and ZEB2, which are members of the ZEB family of transcription factors, play a pivotal role in the development of the vertebrate embryo. However, recent evidence shows that both proteins can also drive the process of epithelial-mesenchymal transition during malignant cancer progression. The understanding of how both ZEBs act as transcription factors opens up new possibilities for future treatment of advanced carcinomas. This review gives insight into the molecular mechanisms that form the basis of the multitude of cellular processes controlled by both ZEB factors. By using an evolutionary approach, we analyzed how the specific organization of the different domains and regulatory sites in ZEB1 and ZEB2 came into existence. On the basis of this analysis, a detailed overview is provided of the different cofactors and post-translational mechanisms that are associated with ZEB protein functionality.


Subject(s)
Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , 5' Untranslated Regions , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Animals , Carcinoma/etiology , Carcinoma/genetics , Carcinoma/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Evolution, Molecular , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/chemistry , Humans , Models, Biological , Multiprotein Complexes , Neural Crest/embryology , Neural Crest/metabolism , Phylogeny , Promoter Regions, Genetic , Signal Transduction , Transcription Factors/chemistry , Transforming Growth Factor beta/metabolism , Zinc Fingers/genetics
20.
Nucleic Acids Res ; 39(Web Server issue): W74-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21576231

ABSTRACT

Transcription factors are important gene regulators with distinctive roles in development, cell signaling and cell cycling, and they have been associated with many diseases. The ConTra v2 web server allows easy visualization and exploration of predicted transcription factor binding sites in any genomic region surrounding coding or non-coding genes. In this new version, users can choose from nine reference organisms ranging from human to yeast. ConTra v2 can analyze promoter regions, 5'-UTRs, 3'-UTRs and introns or any other genomic region of interest. Hundreds of position weight matrices are available to choose from, but the user can also upload any other matrices for detecting specific binding sites. A typical analysis is run in four simple steps of choosing the gene, the transcript, the region of interest and then selecting one or more transcription factor binding sites. The ConTra v2 web server is freely available at http://bioit.dmbr.ugent.be/contrav2/index.php.


Subject(s)
Regulatory Elements, Transcriptional , Software , Transcription Factors/metabolism , Base Sequence , Binding Sites , Humans , Molecular Sequence Data , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL