Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Ecol Lett ; 23(12): 1809-1819, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33001542

ABSTRACT

Rising global temperatures are changing how energy and materials move through ecosystems, with potential consequences for the role of animals in these processes. We tested a central prediction of the metabolic scaling framework-the temperature independence of animal community production-using a series of geothermally heated streams and a comprehensive empirical analysis. We show that the apparent temperature sensitivity of animal production was consistent with theory for individuals (Epind  = 0.64 vs. 0.65 eV), but strongly amplified relative to theoretical expectations for communities, both among (Epamong  = 0.67 vs. 0 eV) and within (Epwithin  = 1.52 vs. 0 eV) streams. After accounting for spatial and temporal variation in resources, we show that the apparent positive effect of temperature was driven by resource supply, providing strong empirical support for the temperature independence of invertebrate production and the necessary inclusion of resources in metabolic scaling efforts.


Subject(s)
Ecosystem , Rivers , Animals , Humans , Invertebrates , Temperature
2.
Glob Chang Biol ; 24(3): 1069-1084, 2018 03.
Article in English | MEDLINE | ID: mdl-28922515

ABSTRACT

Climate warming is affecting the structure and function of river ecosystems, including their role in transforming and transporting carbon (C), nitrogen (N), and phosphorus (P). Predicting how river ecosystems respond to warming has been hindered by a dearth of information about how otherwise well-studied physiological responses to temperature scale from organismal to ecosystem levels. We conducted an ecosystem-level temperature manipulation to quantify how coupling of stream ecosystem metabolism and nutrient uptake responded to a realistic warming scenario. A ~3.3°C increase in mean water temperature altered coupling of C, N, and P fluxes in ways inconsistent with single-species laboratory experiments. Net primary production tripled during the year of experimental warming, while whole-stream N and P uptake rates did not change, resulting in 289% and 281% increases in autotrophic dissolved inorganic N and P use efficiency (UE), respectively. Increased ecosystem production was a product of unexpectedly large increases in mass-specific net primary production and autotroph biomass, supported by (i) combined increases in resource availability (via N mineralization and N2 fixation) and (ii) elevated resource use efficiency, the latter associated with changes in community structure. These large changes in C and nutrient cycling could not have been predicted from the physiological effects of temperature alone. Our experiment provides clear ecosystem-level evidence that warming can shift the balance between C and nutrient cycling in rivers, demonstrating that warming will alter the important role of in-stream processes in C, N, and P transformations. Moreover, our results reveal a key role for nutrient supply and use efficiency in mediating responses of primary producers to climate warming.


Subject(s)
Climate Change , Ecosystem , Hot Temperature , Nitrogen/metabolism , Phosphorus/metabolism , Rivers , Autotrophic Processes , Biomass , Carbon , Carbon Cycle , Nitrogen Fixation , Temperature
3.
Glob Chang Biol ; 24(12): 5738-5750, 2018 12.
Article in English | MEDLINE | ID: mdl-30218544

ABSTRACT

Rapidly, increasing air temperatures across the Arctic are thawing permafrost and exposing vast quantities of organic carbon, nitrogen, and phosphorus to microbial processing. Shifts in the absolute and relative supplies of these elements will likely alter patterns of ecosystem productivity and change the way carbon and nutrients are delivered from upland areas to surface waters such as rivers and lakes. The ultra-oligotrophic nature of surface waters across the Arctic renders these ecosystems particularly susceptible to changes in productivity and food web dynamics as permafrost thaw alters terrestrial-aquatic linkages. The objectives of this study were to evaluate decadal-scale patterns in surface water chemistry and assess potential implications of changing water chemistry to benthic organic matter and aquatic food webs. Data were collected from the upper Kuparuk River on the North Slope of Alaska by the U.S. National Science Foundation's Long-Term Ecological Research program during 1978-2014. Analyses of these data show increases in stream water alkalinity and cation concentrations consistent with signatures of permafrost thaw. Changes are also documented for discharge-corrected nitrate concentrations (+), discharge-corrected dissolved organic carbon concentrations (-), total phosphorus concentrations (-), and δ13 C isotope values of aquatic invertebrate consumers (-). These changes show that warming temperatures and thawing permafrost in the upland environment are leading to shifts in the supply of carbon and nutrients available to surface waters and consequently changing resources that support aquatic food webs. This demonstrates that physical, geochemical, and biological changes associated with warming permafrost are fundamentally altering linkages between upland and aquatic ecosystems in rapidly changing arctic environments.


Subject(s)
Food Chain , Global Warming , Permafrost , Rivers , Alaska , Arctic Regions , Carbon/analysis , Ecosystem , Lakes , Nitrogen/analysis , Phosphorus/analysis
4.
Ecology ; 98(7): 1797-1806, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28402586

ABSTRACT

A central question at the interface of food-web and climate change research is how secondary production, or the formation of heterotroph biomass over time, will respond to rising temperatures. The metabolic theory of ecology (MTE) hypothesizes the temperature-invariance of secondary production, driven by matched and opposed forces that reduce biomass of heterotrophs while increasing their biomass turnover rate (production : biomass, or P:B) with warming. To test this prediction at the whole community level, we used a geothermal heat exchanger to experimentally warm a stream in southwest Iceland by 3.8°C for two years. We quantified invertebrate community biomass, production, and P : B in the experimental stream and a reference stream for one year prior to warming and two years during warming. As predicted, warming had a neutral effect on community production, but this result was not driven by opposing effects on community biomass and P:B. Instead, warming had a positive effect on both the biomass and production of larger-bodied, slower-growing taxa (e.g., larval black flies, dipteran predators, snails) and a negative effect on small-bodied taxa with relatively high growth rates (e.g., ostracods, larval chironomids). We attribute these divergent responses to differences in thermal preference between small- vs. large-bodied taxa. Although metabolic demand vs. resource supply must ultimately constrain community production, our results highlight the potential for idiosyncratic community responses to warming, driven by variation in thermal preference and body size within regional species pools.


Subject(s)
Aquatic Organisms/physiology , Ecosystem , Rivers/chemistry , Temperature , Animals , Biomass , Climate Change , Food Chain , Iceland , Invertebrates/physiology
5.
Glob Chang Biol ; 23(7): 2618-2628, 2017 07.
Article in English | MEDLINE | ID: mdl-27868314

ABSTRACT

How ecological communities respond to predicted increases in temperature will determine the extent to which Earth's biodiversity and ecosystem functioning can be maintained into a warmer future. Warming is predicted to alter the structure of natural communities, but robust tests of such predictions require appropriate large-scale manipulations of intact, natural habitat that is open to dispersal processes via exchange with regional species pools. Here, we report results of a two-year whole-stream warming experiment that shifted invertebrate assemblage structure via unanticipated mechanisms, while still conforming to community-level metabolic theory. While warming by 3.8 °C decreased invertebrate abundance in the experimental stream by 60% relative to a reference stream, total invertebrate biomass was unchanged. Associated shifts in invertebrate assemblage structure were driven by the arrival of new taxa and a higher proportion of large, warm-adapted species (i.e., snails and predatory dipterans) relative to small-bodied, cold-adapted taxa (e.g., chironomids and oligochaetes). Experimental warming consequently shifted assemblage size spectra in ways that were unexpected, but consistent with thermal optima of taxa in the regional species pool. Higher temperatures increased community-level energy demand, which was presumably satisfied by higher primary production after warming. Our experiment demonstrates how warming reassembles communities within the constraints of energy supply via regional exchange of species that differ in thermal physiological traits. Similar responses will likely mediate impacts of anthropogenic warming on biodiversity and ecosystem function across all ecological communities.


Subject(s)
Biodiversity , Ecosystem , Invertebrates , Animals , Biomass , Temperature
6.
Glob Chang Biol ; 22(6): 2152-64, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26719040

ABSTRACT

Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital matter) act as biogeochemical hotspots by controlling important fluxes of energy and material. Understanding how biofilms respond to warming is thus critical for predicting responses of coupled elemental cycles in freshwater systems. We developed biofilm communities in experimental streamside channels along a gradient of mean water temperatures (7.5-23.6 °C), while closely maintaining natural diel and seasonal temperature variation with a common water and propagule source. Both structural (i.e. biomass, stoichiometry, assemblage structure) and functional (i.e. metabolism, N2 -fixation, nutrient uptake) attributes of biofilms were measured on multiple dates to link changes in carbon flow explicitly to the dynamics of nitrogen and phosphorus. Temperature had strong positive effects on biofilm biomass (2.8- to 24-fold variation) and net ecosystem productivity (44- to 317-fold variation), despite extremely low concentrations of limiting dissolved nitrogen. Temperature had surprisingly minimal effects on biofilm stoichiometry: carbon:nitrogen (C:N) ratios were temperature-invariant, while carbon:phosphorus (C:P) ratios declined slightly with increasing temperature. Biofilm communities were dominated by cyanobacteria at all temperatures (>91% of total biovolume) and N2 -fixation rates increased up to 120-fold between the coldest and warmest treatments. Although ammonium-N uptake increased with temperature (2.8- to 6.8-fold variation), the much higher N2 -fixation rates supplied the majority of N to the ecosystem at higher temperatures. Our results demonstrate that temperature can alter how carbon is cycled and coupled to nitrogen and phosphorus. The uncoupling of C fixation from dissolved inorganic nitrogen supply produced large unexpected changes in biofilm development, elemental cycling, and likely downstream exports of nutrients and organic matter.


Subject(s)
Biofilms , Carbon Cycle , Climate Change , Ecosystem , Fresh Water/chemistry , Nitrogen Cycle , Carbon/metabolism , Iceland , Models, Theoretical , Nitrogen/metabolism , Nitrogen Fixation , Phosphorus/metabolism , Seasons , Temperature
7.
Ecology ; 96(3): 603-10, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26236857

ABSTRACT

Variation in resource supply can cause variation in temperature dependences of metabolic processes (e.g., photosynthesis and respiration). Understanding such divergence is particularly important when using metabolic theory to predict ecosystem responses to climate warming. Few studies, however, have assessed the effect of temperature-resource interactions on metabolic processes, particularly in cases where the supply of limiting resources exhibits temperature dependence. We investigated the responses of biomass accrual, gross primary production (GPP), community respiration (CR), and N2 fixation to warming during biofilm development in a streamside channel experiment. Areal rates of GPP, CR, biomass accrual, and N2 fixation scaled positively with temperature, showing a 32- to 71-fold range across the temperature gradient (approximately 7 degrees-24 degrees C). Areal N2-fixation rates exhibited apparent activation energies (1.5-2.0 eV; 1 eV = approximately 1.6 x 10(-19) J) approximating the activation energy of the nitrogenase reaction. In contrast, mean apparent activation energies for areal rates of GPP (2.1-2.2 eV) and CR (1.6-1.9 eV) were 6.5- and 2.7-fold higher than estimates based on metabolic theory predictions (i.e., 0.32 and 0.65 eV, respectively) and did not significantly differ from the apparent activation energy observed for N2 fixation. Mass-specific activation energies for N2 fixation (1.4-1.6 eV), GPP (0.3-0.5 eV), and CR (no observed temperature relationship) were near or lower than theoretical predictions. We attribute the divergence of areal activation energies from those predicted by metabolic theory to increases in N2 fixation with temperature, leading to amplified temperature dependences of biomass accrual and areal rates of GPP and R. Such interactions between temperature dependences must be incorporated into metabolic models to improve predictions of ecosystem responses to climate change.


Subject(s)
Biofilms/growth & development , Biomass , Nitrogen Fixation , Nitrogen/metabolism , Photosynthesis , Rivers , Iceland , Temperature
8.
Glob Chang Biol ; 21(3): 1025-40, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25400273

ABSTRACT

Temperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits--growth, respiration, body size, and elemental content--that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population-level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature-nutrient interactions influence processes at the whole-ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature-nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and nutrients will be critical for developing realistic predictions about ecological responses to multiple, simultaneous drivers of global change, including climate warming and elevated nutrient supply.


Subject(s)
Ecosystem , Food Chain , Temperature
9.
Oecologia ; 176(3): 859-69, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25218190

ABSTRACT

Energy limitation has long been the primary assumption underlying conceptual models of evolutionary and ecological processes in cave ecosystems. However, the prediction that cave communities are actually energy-limited in the sense that constituent populations are consuming all or most of their resource supply is untested. We assessed the energy-limitation hypothesis in three cave streams in northeastern Alabama (USA) by combining measurements of animal production, demand, and resource supplies (detritus, primarily decomposing wood particles). Comparisons of animal consumption and detritus supply rates in each cave showed that all, or nearly all, available detritus was required to support macroinvertebrate production. Furthermore, only a small amount of macroinvertebrate prey production remained to support other predatory taxa (i.e., cave fish and salamanders) after accounting for crayfish consumption. Placing the energy demands of a cave community within the context of resource supply rates provided quantitative support for the energy-limitation hypothesis, confirming the mechanism (limited energy surpluses) that likely influences the evolutionary processes and population dynamics that shape cave communities. Detritus-based surface ecosystems often have large detrital surpluses. Thus, cave ecosystems, which show minimal surpluses, occupy the extreme oligotrophic end of the spectrum of detritus-based food webs.


Subject(s)
Caves , Energy Intake , Food Chain , Invertebrates/physiology , Rivers , Vertebrates/physiology , Alabama , Animals , Astacoidea/physiology , Biomass
10.
Ecology ; 105(6): e4314, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710667

ABSTRACT

Warming temperatures are altering communities and trophic networks across Earth's ecosystems. While the overall influence of warming on food webs is often context-dependent, increasing temperatures are predicted to change communities in two fundamental ways: (1) by reducing average body size and (2) by increasing individual metabolic rates. These warming-induced changes have the potential to influence the distribution of food web fluxes, food web stability, and the relative importance of deterministic and stochastic ecological processes shaping community assembly. Here, we quantified patterns and the relative distribution of organic matter fluxes through stream food webs spanning a broad natural temperature gradient (5-27°C). We then related these patterns to species and community trait distributions of mean body size and population biomass turnover (P:B) within and across streams. We predicted that (1) communities in warmer streams would exhibit smaller body size and higher P:B and (2) organic matter fluxes within warmer communities would increasingly skew toward smaller, higher P:B populations. Across the temperature gradient, warmer communities were characterized by smaller body size (~9% per °C) and higher P:B (~7% faster turnover per °C) populations on average. Additionally, organic matter fluxes within warmer streams were increasingly skewed toward higher P:B populations, demonstrating that warming can restructure organic matter fluxes in both an absolute and relative sense. With warming, the relative distribution of organic matter fluxes was decreasingly likely to arise through the random sorting of species, suggesting stronger selection for traits driving high turnover with increasing temperature. Our study suggests that a warming world will favor energy fluxes through "smaller and faster" populations, and that these changes may be more predictable than previously thought.


Subject(s)
Food Chain , Rivers , Animals , Energy Metabolism , Climate Change
11.
Ecology ; 102(10): e03467, 2021 10.
Article in English | MEDLINE | ID: mdl-34236706

ABSTRACT

Understanding the observed temperature dependence of decomposition (i.e., its "apparent" activation energy) requires separation of direct effects of temperature on consumer metabolism (i.e., the "inherent" activation energy) from those driven by indirect seasonal patterns in phenology and biomass, and by longer-term, climate-driven shifts in acclimation, adaptation, and community assembly. Such parsing is important because studies that relate temperature to decomposition usually involve multi-season data and/or spatial proxies for long-term shifts, and so incorporate these indirect factors. The various effects of such factors can obscure the inherent temperature dependence of detrital processing. Separating the inherent temperature dependence of decomposition from other drivers is important for accurate prediction of the contribution of detritus-sourced greenhouse gases to climate warming and requires novel approaches to data collection and analysis. Here, we present breakdown rates of red maple litter incubated in coarse- and fine-mesh litterbags (the latter excluding macroinvertebrates) for serial approximately one-month increments over one year in nine streams along a natural temperature gradient (mean annual: 12.8°-16.4°C) from north Georgia to central Alabama, USA. We analyzed these data using distance-based redundancy analysis and generalized additive mixed models to parse the dependence of decomposition rates on temperature, seasonality, and shredding macroinvertebrate biomass. Microbial decomposition in fine-mesh bags was significantly influenced by both temperature and seasonality. Accounting for seasonality corrected the temperature dependence of decomposition rate from 0.25 to 0.08 eV. Shredder assemblage structure in coarse-mesh bags was related to temperature across both sites and seasons, shifting from "cold" stonefly-dominated communities to "warm" communities dominated by snails or crayfish. Shredder biomass was not a significant predictor of either coarse-mesh or macroinvertebrate-mediated (i.e., coarse- minus fine-mesh) breakdown rates, which were also jointly influenced by temperature and seasonality. Unlike fine-mesh bags, however, temperature dependence of litter breakdown did not differ between models with and without seasonality for either coarse-mesh (0.36 eV) or macroinvertebrate-mediated (0.13 eV) rates. We conclude that indirect (non-thermal) seasonal and site-level effects play a variable and potentially strong role in shaping the apparent temperature dependence of detrital breakdown. Such effects should be incorporated into studies designed to estimate inherent temperature dependence of slow ecological processes.


Subject(s)
Ecosystem , Insecta , Alabama , Animals , Biodegradation, Environmental , Georgia , Plant Leaves , Rivers , Temperature
12.
Environ Monit Assess ; 171(1-4): 83-92, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20535547

ABSTRACT

The Bear Brook Watershed in Maine (BBWM) is a long-term, paired watershed experiment that addresses the effects of acid and nitrogen (N) deposition on whole watersheds. To examine stream response at BBWM, we synthesized data on organic matter dynamics, including leaf breakdown rates, organic matter inputs and standing stocks, macroinvertebrate secondary production, and nutrient uptake in treated and reference streams at the BBWM. While N concentrations in stream water and leaves have increased, the input, standing stocks, and breakdown rates of leaves, as well as macroinvertebrate production, were not responsive to acid and N deposition. Both chronic and acute increases of N availability have saturated uptake of nitrate in the streams. Recent experimental increases in phosphorus (P) availability enhanced stream capacity to take up nitrate and altered the character of N saturation. These results show how the interactive effects of multiple factors, including environmental flow regime, acidification, and P availability, may constrain stream response to chronic N deposition.


Subject(s)
Ecosystem , Fresh Water/chemistry , Nitrogen/analysis , Rivers/chemistry , Animals , Environmental Monitoring , Invertebrates/metabolism , Maine , Trees/metabolism , Water Movements
13.
Ecology ; 101(4): e02952, 2020 04.
Article in English | MEDLINE | ID: mdl-31840236

ABSTRACT

Climate warming is predicted to alter routing and flows of energy through food webs because of the critical and varied effects of temperature on physiological rates, community structure, and trophic dynamics. Few studies, however, have experimentally assessed the net effect of warming on energy flux and food web dynamics in natural intact communities. Here, we test how warming affects energy flux and the trophic basis of production in a natural invertebrate food web by experimentally heating a stream reach in southwest Iceland by ~4°C for 2 yr and comparing its response to an unheated reference stream. Previous results from this experiment showed that warming led to shifts in the structure of the invertebrate assemblage, with estimated increases in total metabolic demand but no change in annual secondary production. We hypothesized that elevated metabolic demand and invariant secondary production would combine to increase total consumption of organic matter in the food web, if diet composition did not change appreciably with warming. Dietary composition of primary consumers indeed varied little between streams and among years, with gut contents primarily consisting of diatoms (72.9%) and amorphous detritus (19.5%). Diatoms dominated the trophic basis of production of primary consumers in both study streams, contributing 79-86% to secondary production. Although warming increased the flux of filamentous algae within the food web, total resource consumption did not increase as predicted. The neutral net effect of warming on total energy flow through the food web was a result of taxon-level variation in responses to warming, a neutral effect on total invertebrate production, and strong trophic redundancy within the invertebrate assemblage. Thus, food webs characterized by a high degree of trophic redundancy may be more resistant to the effects of climate warming than those with more diverse and specialized consumers.


Subject(s)
Ecosystem , Food Chain , Animals , Climate , Iceland , Invertebrates
14.
Ecology ; 100(6): e02690, 2019 06.
Article in English | MEDLINE | ID: mdl-30854634

ABSTRACT

Light and temperature are key drivers of ecosystem productivity, but synchrony of their annual cycles typically obscures their relative influence. The coupling of annual light-temperature regimes also drives complementary seasonal cycles of energy supply (primary production) and demand (metabolism), perhaps promoting temporal stability in carbon (C) storage and food web production that may be difficult to discern in most ecosystems. Spring-fed streams in the Arctic are subject to extreme annual fluctuations in light availability but have relatively stable water temperatures, which allows assessment of the independent effects of light and temperature. We used the unusual annual light and temperature regimes of Ivishak Spring, Alaska, USA (latitude 69° N, annual water temperature range ~4-7°C) to test predictions about the effect of light availability on consumer productivity with minimally confounding effects of temperature. We predicted that (1) annual patterns of secondary production would follow patterns of primary production, rather than temperature, due to organic C limitation during winter darkness when photosynthesis is effectively halted, (2) C limitation would propagate from primary producers upward through several trophic levels, (3) the lack of temperature dependence during winter darkness would be expressed as anomalous Arrhenius plots of growth rates indicating decoupled production-temperature relationships, and (4) consumer diets would reflect C limitation during winter. As predicted, we found (1) lowest production by macroinvertebrates and Salvelinus malma (Dolly Varden char) at the lowest light levels rather than the lowest temperatures, (2) apparent winter C limitation propagated upward through three trophic levels, (3) anomalous Arrhenius plots indicating lack of temperature dependence of consumer growth rates during winter, and (4) lowest consumption of diatoms (by macroinvertebrates) and invertebrate prey (by S. malma) during winter. Together, these results indicate that light drives annual patterns of animal production in Ivishak Spring, with stable annual temperatures likely exacerbating C limitation of ectotherm metabolism during winter. The timing and severity of winter C limitation in this unusual Arctic-spring food web highlight a fundamental role for light-temperature synchrony in matching energy supply with demand in most other ecosystem types, thereby conferring a measure of stability in the metabolism of their food webs over annual time scales.


Subject(s)
Ecosystem , Rivers , Alaska , Animals , Arctic Regions , Seasons , Temperature
15.
Ecol Appl ; 16(5): 1796-807, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17069372

ABSTRACT

Catchment urbanization can alter physical, chemical, and biological attributes of stream ecosystems. In particular, changes in land use may affect the dynamics of organic matter decomposition, a measure of ecosystem function. We examined leaf-litter decomposition in 18 tributaries of the St. Johns River, Florida, USA. Land use in all 18 catchments ranged from 0% to 93% urban which translated to 0% to 66% total impervious area (TIA). Using a litter-bag technique, we measured mass loss, fungal biomass, and macroinvertebrate biomass for two leaf species (red maple [Acer rubrum] and sweetgum [Liquidambar styraciflua]). Rates of litter mass loss, which ranged from 0.01 to 0.05 per day for red maple and 0.006 to 0.018 per day for sweetgum, increased with impervious catchment area to levels of approximately 30-40% TIA and then decreased as impervious catchment area exceeded 40% TIA. Fungal biomass was also highest in streams draining catchments with intermediate levels of TIA. Macroinvertebrate biomass ranged from 17 to 354 mg/bag for red maple and from 15 to 399 mg/bag for sweetgum. Snail biomass and snail and total invertebrate richness were strongly related to breakdown rates among streams regardless of leaf species. Land-use and physical, chemical, and biological variables were highly intercorrelated. Principal-components analysis was therefore used to reduce the variables into several orthogonal axes. Using stepwise regression, we found that flow regime, snail biomass, snail and total invertebrate richness, and metal and nutrient content (which varied in a nonlinear manner with impervious surface area) were likely factors affecting litter breakdown rates in these streams.


Subject(s)
Ecosystem , Rivers/chemistry , Urbanization , Animals , Conservation of Natural Resources , Florida , Fungi , Invertebrates , Plants
16.
Environ Pollut ; 134(3): 363-75, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15620582

ABSTRACT

During the autumn of 1997 and 1998, leaf litter processing rates and leaf pack invertebrate assemblages were examined at eight stations along a pollution gradient in Goosefare Brook, a first-order coastal plain stream in southern Maine (USA). There was no significant effect on litter softening rate in 1997, and only the most polluted station showed a decrease in 1998. However, litter loss rates showed decreases in both years. The structure of invertebrate assemblages changed in response to the stresses, showing a decline in EPT richness and an increase in the proportion of collecting taxa. However, total shredder biomass was only weakly affected. Shredder biomass at all stations was dominated by Tipula, and biomass of other shredder taxa showed a serial replacement along the gradient of stress related to their pollution tolerance. Rather than the expected relationship with shredder biomass, litter processing rates were directly related to water and sediment quality. Goosefare Brook demonstrates how variable pollution tolerance of community members enables stress resistance and a consequent preservation of ecosystem function.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Invertebrates , Water Pollution , Animals , Biodegradation, Environmental , Maine , Plant Leaves , Rivers
17.
Ecology ; 68(6): 1932-1942, 1987 Dec.
Article in English | MEDLINE | ID: mdl-29357177

ABSTRACT

By comparing distributions of functional group production among different habitats in an Appalachian mountain stream, the influence of site-specific geomorphology upon the overall functional group composition of the animal community was demonstrated. By replicated monthly sampling, substrate particle size distributions, current velocity, standing crops of benthic organic matter, and production of macrofauna were measured in each of three principal habitats: bedrock-outcrop, riffle, and pool. Samples were taken at randomly assigned locations and the relative number of samples taken from each habitat was assumed to be proportional to the area of the habitat within the stream. These proportions were used to weight production measured in each habitat and the resulting values were summed to obtain production per unit area of average stream bed. The bedrock-outcrop habitat was characterized by high material entertainment and export as indicated by significantly higher current velocities and lower standing crops of detritus compared to the riffle and pool habitats. Pools were sites of low entertainment and high retention of organic matter as demonstrated by significantly lower current velocities and higher accumulations of detritus than other habitats. The riffle habitat was intermediate to the bedrock-outcrop and pool habitats in all parameters measured. Annual production of collector-filterers was highest in the bedrock-outcrop (ash-free dry mass 1920 mg/m2 ), followed by riffle (278 mg/m2 ) and pool (32 mg/m2 ). Although constituting only 19% of the stream area, the bedrock-outcrop habitat contributed 68% of the habitat-weighted collector-filterer production. Annual production of shredders was highest in pools (2616 mg/m2 ), followed by riffles (1657 mg/m2 ) and bedrock-outcrop (579 mg/m2 ). The pool habitat, constituting 23% of stream area, contributed 36% of shredder production. Annual production of scrapers was highest in the riffle habitat (905 mg/m2 ), followed by bedrock-outcrop (517-mg/m2 ) and pool (238 mg/m2 ). Riffles constituted 58% of total stream area and were the source of 77% of the habitat-weighted scraper production. Annual production of engulfing predators was greatest in the pool habitat (2313 mg/m2 ), followed by riffles (1765 mg/m2 ) and bedrock-outcrop (687 mg/m2 ). The relatively lower production of engulfing predators in the bedrock-outcrop habitat reflects a functional shift in mode of resource acquisition by predators, with predaceous collector-filterers (Arcto-psychinae: Trichoptera) predominating in the bedrock-outcrop. Collector-gatherer production was more evenly distributed, with the bedrock-outcrop, riffle, and pool habitats each contributing 14, 54, and 33% to the habitat-weighted production, respectively. Unlike all other functional groups, this distribution was not significantly different from the distribution of stream area among habitats and reflected lack of dependence on specific physical attributes of the local environment for access to food by members of this functional group. Local geomorphology determined the diversity and spatial distribution of bedrock-outcrops, riffles, and pools in the study stream. In turn, the functional structure of the macrofauna, when viewed holistically, was the result of the integration of the relative contributions of each habitat type of total stream area. Total habitat-weighted annual production in the study stream was estimated at 5093 and 1921 mg/m2 for primary and secondary consumers, respectively. The distribution of habitat-weighted production among functional groups was: collector-gatherers (39%), followed by shredders (225), engulfing predators (22%), scrapers (13%), and collector-filterers (8%). This functional structure agrees favorably with current conceptual models of head water streams draining forested catchments.

18.
Oecologia ; 115(1-2): 173-183, 1998 Jun.
Article in English | MEDLINE | ID: mdl-28308450

ABSTRACT

Ecosystem-wide effects of introduced brown trout (Salmo trutta L.) and native river galaxias (Galaxiaseldoni McDowall) were studied by analysing ecosystem production budgets for two adjacent tributaries of a grassland stream-system in the South Island of New Zealand. One tributary was inhabited by brown trout, the other by river galaxias. No other fish species were present in either stream. The budget for the river galaxias stream indicated little top-down control of invertebrates by fish predation (river galaxias consumed ∼18% of available prey production). A large proportion of annual net primary production was required to support production by invertebrates (invertebrates consumed an average of ∼75% of available primary production), and mean surplus primary production (i.e. not consumed) was not significantly different from zero. Primary and secondary production were presumably mutually limiting in this system (i.e. controlled by simultaneous top-down and bottom-up mechanisms). In contrast, the budget for the brown trout stream indicated extreme top-down control of invertebrate populations by fish predation; essentially all invertebrate production (∼100%) was required to support trout production. Invertebrate production required only a minor portion of annual net primary production (∼21%) and primary production was presumably controlled by mechanisms other than grazing (e.g. sloughing, nutrient limitation). Predatory invertebrates had little quantitative effect on prey populations in either stream. Recent experimental studies of invertebrate behaviour, fish behaviour, and food-web structure in New Zealand streams with physically stable channels indicate that a trophic cascade should be observed in streams inhabited by brown trout, in contrast to those inhabited by native fish. The results reported here provide ecosystem-level evidence supporting this prediction.

19.
Environ Monit Assess ; 93(1-3): 229-50, 2004.
Article in English | MEDLINE | ID: mdl-15074618

ABSTRACT

The effects of the Maine Turnpike (Interstate 95) on leaf litter processing were examined in five first- and second-order coastal plain streams in southern Maine, U.S.A. Invertebrate assemblages and red maple leaf softening and loss rates were compared at 53 stations arrayed upstream and downstream of the turnpike. Litter softening rate was not affected by the roadway. Litter loss rate was significantly faster at downstream stations (-0.0024 degree-day(-1)) than at upstream stations or at stations nearest the roadway, which were not different from each other (-0.0022 degree-day(-1)). Litter softening and loss rates were more strongly related to physical and chemical habitat variables than to shredder assemblage characteristics. Significant among-stream differences were observed in most community structural metrics and in biomass of important shredder taxa, but effects of the roadway were rarely consistent among streams. This is attributed in part to habitat variation, which was greater among streams than within streams. This study suggests that while the presence of the Maine Turnpike may influence stream water quality and habitat structure, the relatively subtle effects of roadway runoff and associated habitat modifications on stream ecosystem processes are masked by within- and among-stream variability in litter processing and leaf pack invertebrate assemblage structure.


Subject(s)
Invertebrates , Motor Vehicles , Plant Leaves/metabolism , Animals , Environmental Monitoring , Maine , Population Dynamics , Rivers , Trees , Vehicle Emissions
20.
Environ Monit Assess ; 89(1): 95-127, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14609276

ABSTRACT

The influence of urbanization on stream insect communities was determined by comparing physical, chemical, and biological characteristics of streams draining 20 catchments with varying levels of urban land-cover in Maine (U.S.A). Percent total impervious surface area (PTIA), which was used to quantify urban land-use, ranged from approximately 1-31% among the study catchments. Taxonomic richness of stream insect communities showed an abrupt decline as PTIA increased above 6%. Streams draining catchments with PTIA < 6% had the highest levels of both total insect and EPT (Ephemeroptera + Plecoptera + Trichoptera) taxonomic richness. These streams contained insect communities with a total richness averaging 33 taxa in fall and 31 taxa in spring; EPT richness ranged from an average of 15 taxa in fall and 13 taxa in spring. In contrast, none of the streams draining catchments with 6-27% PTIA had a total richness > 18 taxa or an EPT richness > 6 taxa. Insect communities in streams with PTIA > 6% were characterized by the absence of pollution-intolerant taxa. The distribution of more pollution-tolerant taxa (e.g. Acerpenna (Ephemeroptera); Paracapnia, Allocapnia (Plecoptera); Optioservus, Stenelmis (Coleoptera); Hydropsyche, Cheumatopsvyche (Trichoptera)), however, showed little relation to PTIA. In contrast to the apparent threshold relationship between PTIA and insect taxonomic richness, both habitat quality and water quality tended to decline as linear functions of PTIA. Our results indicate that, in Maine, an abrupt change in stream insect community structure occurs at a PTIA above a threshold of approximately 6% of total catchment area. The measurement of PTIA may provide a valuable tool for predicting thresholds for adverse effects of urbanization on the health of headwater streams in Maine.


Subject(s)
Ecosystem , Insecta , Water Pollutants/poisoning , Animals , Classification , Environmental Monitoring/methods , Forecasting , Maine , Population Dynamics , Reference Values , Risk Assessment , Rivers , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL