Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 19(3): e1011269, 2023 03.
Article in English | MEDLINE | ID: mdl-36996244

ABSTRACT

Trypanosoma brucei spp. develop into mammalian-infectious metacyclic trypomastigotes inside tsetse salivary glands. Besides acquiring a variant surface glycoprotein (VSG) coat, little is known about the metacyclic expression of invariant surface antigens. Proteomic analyses of saliva from T. brucei-infected tsetse flies identified, in addition to VSG and Brucei Alanine-Rich Protein (BARP) peptides, a family of glycosylphosphatidylinositol (GPI)-anchored surface proteins herein named as Metacyclic Invariant Surface Proteins (MISP) because of its predominant expression on the surface of metacyclic trypomastigotes. The MISP family is encoded by five paralog genes with >80% protein identity, which are exclusively expressed by salivary gland stages of the parasite and peak in metacyclic stage, as shown by confocal microscopy and immuno-high resolution scanning electron microscopy. Crystallographic analysis of a MISP isoform (MISP360) and a high confidence model of BARP revealed a triple helical bundle architecture commonly found in other trypanosome surface proteins. Molecular modelling combined with live fluorescent microscopy suggests that MISP N-termini are potentially extended above the metacyclic VSG coat, and thus could be tested as a transmission-blocking vaccine target. However, vaccination with recombinant MISP360 isoform did not protect mice against a T. brucei infectious tsetse bite. Lastly, both CRISPR-Cas9-driven knock out and RNAi knock down of all MISP paralogues suggest they are not essential for parasite development in the tsetse vector. We suggest MISP may be relevant during trypanosome transmission or establishment in the vertebrate's skin.


Subject(s)
Parasites , Trypanosoma brucei brucei , Trypanosoma , Animals , Mice , Trypanosoma brucei brucei/genetics , Membrane Proteins , Alanine , Proteomics , Salivary Glands/parasitology , Mammals , Membrane Glycoproteins
2.
PLoS Pathog ; 18(3): e1010376, 2022 03.
Article in English | MEDLINE | ID: mdl-35271685

ABSTRACT

Sodalis glossinidius, a secondary bacterial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components interfering with African trypanosome transmission (i.e. paratransgenesis). Nanobodies (Nbs) have been proposed as potential candidates to target the parasite during development in the tsetse fly. In this study, we have generated an immune Nb-library and developed a panning strategy to select Nbs against the Trypanosoma brucei brucei procyclic developmental stage present in the tsetse fly midgut. Selected Nbs were expressed, purified, assessed for binding and tested for their impact on the survival and growth of in vitro cultured procyclic T. b. brucei parasites. Next, we engineered S. glossinidius to express the selected Nbs and validated their ability to block T. brucei development in the tsetse fly midgut. Genetically engineered S. glossinidius expressing Nb_88 significantly compromised parasite development in the tsetse fly midgut both at the level of infection rate and parasite load. Interestingly, expression of Nb_19 by S. glossinidius resulted in a significantly enhanced midgut establishment. These data are the first to show in situ delivery by S. glossinidius of effector molecules that can target the trypanosome-tsetse fly crosstalk, interfering with parasite development in the fly. These proof-of-principle data represent a major step forward in the development of a control strategy based on paratransgenic tsetse flies. Finally, S. glossinidius-based Nb delivery can also be applied as a powerful laboratory tool to unravel the molecular determinants of the parasite-vector association.


Subject(s)
Single-Domain Antibodies , Trypanosoma brucei brucei , Trypanosoma , Tsetse Flies , Animals , Enterobacteriaceae/genetics , Enterobacteriaceae/metabolism , Single-Domain Antibodies/metabolism , Symbiosis , Trypanosoma brucei brucei/genetics , Tsetse Flies/parasitology
3.
Arch Microbiol ; 206(2): 66, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227204

ABSTRACT

Brown rot Polypores are ecologically significant as they play a crucial role in maintaining the carbon cycle and contribute to humus formation in forest ecosystems through their lignocellulose degradation ability. It is important to note that some species can significantly impact timber, potentially causing decay in economically valuable wood. Many Asian countries including Pakistan are still under the exploratory phase and have undocumented species diversity in Polypore fungi. In the current study, collections representing five different species belonging to two families, Postiaceae and Adustoporiaceae, were subjected to detailed morphoanatomical and molecular analyses. A combined matrix of two gene datasets (ITS and nrLSU) was analyzed using three different phylogenetic methods viz. Maximum Parsimony (MP), Maximum Likelihood (ML), and Bayesian inference (BI). Our study presents descriptions of five previously undocumented brown rot Polypore species from the country including Fuscopostia fragilis (Fr.) B.K. Cui, L.L. Shen & Y.C. Dai, Amaropostia stiptica (Pers.) B.K. Cui, L.L. Shen & Y.C. Dai, Cyanosporus piceicola B.K. Cui, L.L. Shen & Y.C. Dai, Spongiporus balsameus (Peck) A. David, Rhodonia placenta (Fr.) Niemelä, K.H. Larss. & Schigel. Regarding the molecular data, nodes of our subject sequences were substantially supported and fell under their respective species clades with high ML bootstrap values (≥ 95), MP bootstrap ≥ 74 and BI probabilities ≥ 0.98. Findings of the study will not only contribute to our understanding of local Polypores species diversity but also enhance knowledge of geographical distribution in global context.


Subject(s)
Carbon Cycle , Ecosystem , Humans , Pakistan , Bayes Theorem , Phylogeny
4.
Langmuir ; 40(16): 8636-8644, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38602887

ABSTRACT

Owing to the rapid increase in anthropogenic emission of carbon dioxide (CO2) in the atmosphere, which has resulted in a number of global climate challenges, a decrease in CO2 emissions is urgently needed in the current scenario. This study focuses on the development and characterization of composites for carbon dioxide (CO2) separation. The composites consist of two task-specific ionic liquids (TSILs), namely, tetramethylgunidinium imidazole [TMGHIM] and tetramethylgunidinium phenol [TMGHPhO], impregnated in ZIF-8. The performance of CO2 separation, including sorption capacity and selectivity, was evaluated for pristine ZIF-8 and composites of TMGHIM@ZIF-8 and TMGHPhO@ZIF-8. To demonstrate the thermal stability of the material, thermogravimetric analysis (TGA) was performed. Additionally, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) were utilized to showcase the crystal structures and morphology. Fourier transform infrared spectroscopy (FTIR) and BET were also utilized to confirm the successful incorporation of TSILs into ZIF-8. The composite synthesized with TMGHIM@ZIF-8 demonstrated superior CO2 sorption performance as compared with TMGHPhO@ZIF-8. This is attributed to its strong attraction toward CO2, resulting in a higher CO2/CH4 selectivity of 110 while pristine MOFs showed 12 that is 9 times higher than that of the pristine ZIF-8. These TSILs@ZIF-8 composites have significant potential in designing sorbent materials for efficient acid gas separation applications.

5.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38676070

ABSTRACT

Unsupervised anomaly detection in multivariate time series sensor data is a complex task with diverse applications in different domains such as livestock farming and agriculture (LF&A), the Internet of Things (IoT), and human activity recognition (HAR). Advanced machine learning techniques are necessary to detect multi-sensor time series data anomalies. The primary focus of this research is to develop state-of-the-art machine learning methods for detecting anomalies in multi-sensor data. Time series sensors frequently produce multi-sensor data with anomalies, which makes it difficult to establish standard patterns that can capture spatial and temporal correlations. Our innovative approach enables the accurate identification of normal, abnormal, and noisy patterns, thus minimizing the risk of misinterpreting models when dealing with mixed noisy data during training. This can potentially result in the model deriving incorrect conclusions. To address these challenges, we propose a novel approach called "TimeTector-Twin-Branch Shared LSTM Autoencoder" which incorporates several Multi-Head Attention mechanisms. Additionally, our system now incorporates the Twin-Branch method which facilitates the simultaneous execution of multiple tasks, such as data reconstruction and prediction error, allowing for efficient multi-task learning. We also compare our proposed model to several benchmark anomaly detection models using our dataset, and the results show less error (MSE, MAE, and RMSE) in reconstruction and higher accuracy scores (precision, recall, and F1) against the baseline models, demonstrating that our approach outperforms these existing models.


Subject(s)
Livestock , Animals , Algorithms , Humans , Machine Learning , Neural Networks, Computer , Agriculture/methods
6.
Small ; : e2305333, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37857587

ABSTRACT

The fabrication of a highly selective and ultrasensitive sulfite nanobiosensor based on a layered architectural fabrication aided by the encapsulation of sulfite oxidase (SOx) in Nafion (Naf) matrix on a multiwalled carbon nanotubes-polypyrrole (MWCNTs-PPy) composite decorated with platinum nanoparticles (PtNPs) is described. The MWCNTs are deposited in the inner layer on a Pt electrode during electropolymerization of pyrrole (Py), followed by decoration with a PtNPs layer and subsequent encapsulation of SOx with Naf in the third layer capped with a fourth thin PtNPs layer. Images obtained by field emission scanning electron microscopy (FESEM) reveal that high-density PtNPs are deposited onto the 3D nanostructured inner MWCNTs-PPy layer and the electrochemical behavior is investigated. A large surface area provided by the incorporation of MWCNTs in the composite and decoration with PtNPs enables increased SOx loading, SOx retention, and substantial improvement in sensing performance. The resulting layered PtNPs/SOx-Naf/PtNPs/MWCNTs-PPy nanobiosensor exhibits a fast response time (within 3 s), a linear calibration range of 20 nmm - 6 m with an excellent sensitivity of 71 µA mm-1  cm-2 and a detection limit of 5.4 nm. The nanobiosensor  was effective in discriminating against common interferants and  was successfully applied to sulfite determination in real samples.

7.
Appl Opt ; 62(18): 4860-4865, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37707261

ABSTRACT

We demonstrate a chiral metasurface that exhibits a giant chiroptical response as well as functions as an optical diode due to geometrical asymmetry for circularly polarized light (CPL). Engineering the Mie-type multipole radiation using geometrical features led to performance values in terms of near-unity transmission and circular dichroism (CD) efficiency (about 0.96) and an extinction ratio of  ∼3.8×104 for 1550 nm wavelength. A continuous stopband of 1538-1556 nm is achieved for an unchosen component of CPL while keeping the transmission efficiency of the chosen CPL component larger than 0.9. Because of the high extinction ratio and CD efficiency, the proposed metasurface has the potential for chiroptical applications including high-contrast polarization imaging, precise Stokes parameters measurement, optical diodes, and polarization detection for CPL.

8.
Sensors (Basel) ; 23(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36991642

ABSTRACT

Lung cancer is a high-risk disease that causes mortality worldwide; nevertheless, lung nodules are the main manifestation that can help to diagnose lung cancer at an early stage, lowering the workload of radiologists and boosting the rate of diagnosis. Artificial intelligence-based neural networks are promising technologies for automatically detecting lung nodules employing patient monitoring data acquired from sensor technology through an Internet-of-Things (IoT)-based patient monitoring system. However, the standard neural networks rely on manually acquired features, which reduces the effectiveness of detection. In this paper, we provide a novel IoT-enabled healthcare monitoring platform and an improved grey-wolf optimization (IGWO)-based deep convulution neural network (DCNN) model for lung cancer detection. The Tasmanian Devil Optimization (TDO) algorithm is utilized to select the most pertinent features for diagnosing lung nodules, and the convergence rate of the standard grey wolf optimization (GWO) algorithm is modified, resulting in an improved GWO algorithm. Consequently, an IGWO-based DCNN is trained on the optimal features obtained from the IoT platform, and the findings are saved in the cloud for the doctor's judgment. The model is built on an Android platform with DCNN-enabled Python libraries, and the findings are evaluated against cutting-edge lung cancer detection models.


Subject(s)
Artificial Intelligence , Lung Neoplasms , Humans , Early Detection of Cancer , Neural Networks, Computer , Algorithms , Lung Neoplasms/diagnosis , Delivery of Health Care
9.
Molecules ; 28(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37375281

ABSTRACT

Entropy is a thermodynamic function used in chemistry to determine the disorder and irregularities of molecules in a specific system or process. It does this by calculating the possible configurations for each molecule. It is applicable to numerous issues in biology, inorganic and organic chemistry, and other relevant fields. Metal-organic frameworks (MOFs) are a family of molecules that have piqued the curiosity of scientists in recent years. They are extensively researched due to their prospective applications and the increasing amount of information about them. Scientists are constantly discovering novel MOFs, which results in an increasing number of representations every year. Furthermore, new applications for MOFs continue to arise, illustrating the materials' adaptability. This article investigates the characterisation of the metal-organic framework of iron(III) tetra-p-tolyl porphyrin (FeTPyP) and CoBHT (CO) lattice. By constructing these structures with degree-based indices such as the K-Banhatti, redefined Zagreb, and the atom-bond sum connectivity indices, we also employ the information function to compute entropies.

10.
Opt Lett ; 47(21): 5700-5703, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-37219307

ABSTRACT

To date, the helix-like assemblies are known for delivering the most broadband chiroptic response; however, as their dimensions shrink to the nanoscale, it becomes increasingly difficult to realize three-dimensional (3D) building blocks and accurate alignments. In addition, a continuous optical channel requirement hinders the downsizing for integrated photonics. Here, we introduce an alternative approach based on two assembled layers of dielectric-metal nanowires to demonstrate that chiroptic effects similar to helix-like metamaterials can be realized with an ultracompact planar structure by creating dissymmetry using orientation and making use of interference phenomena. We constructed two polarization filters for the near-(NIR) and the mid-infrared (MIR) spectrums that exhibit a broadband (0.835-2.11 µm and 3.84-10.64 µm) chiroptic response with maximum transmission and circular dichroism (CD) of approximately 0.965 and extinction ratio > 600. The structure is easy to fabricate, independent of alignments, and scalable from the visible to MIR range for applications including imaging, medical diagnostics, polarization conversion, and optical communication.

11.
AJR Am J Roentgenol ; 218(4): 687-698, 2022 04.
Article in English | MEDLINE | ID: mdl-34817191

ABSTRACT

BACKGROUND. Gadobenate and gadoxetate show different degrees of intracellular accumulation within hepatocytes, potentially impacting these agents' relative performance for hepatocellular carcinoma (HCC) diagnosis. OBJECTIVE. The purpose of this article was to perform an intraindividual comparison of gadobenate-enhanced MRI and gadoxetate-enhanced MRI for detection of HCC and to assess the impact of inclusion of hepatobiliary phase images on HCC detection for both agents. METHODS. This prospective study enrolled 126 patients (112 men, 14 women; mean age, 52.3 years) at high risk for HCC who consented to undergo two 3-T liver MRI examinations (one using gadobenate [0.05 mmol/kg], one using gadoxetate [0.025 mmol/kg]) separated by 7-14 days. The order of the two contrast agents was randomized. All examinations included postcontrast dynamic and hepatobiliary phase images (120 minutes for gadobenate, 20 minutes for gadoxetate). Three radiologists independently reviewed the gadobenate and gadoxetate examinations in separate sessions and recorded the location of detected observations. Observations were classified using LI-RADS version 2018 and using a LI-RADS modification whereby hepatobiliary phase hypointensity may upgrade observations from category LR-4 to LR-5. Observations classified as LR-5 were considered positive interpretations for HCC. Diagnostic performance for histologically confirmed HCC (n = 96) was assessed. RESULTS. Across readers, sensitivity for HCC for gadobenate versus gadoxetate was 74.0-80.2% versus 54.2-67.7% using dynamic images alone and 82.1-87.4% versus 66.3-81.1% using dynamic and hepatobiliary phase images. For HCCs measuring 1.0-2.0 cm, sensitivity for gadobenate versus gadoxetate was 61.9% (all readers) versus 38.1-57.1% using dynamic images alone and 76.2-85.7% versus 52.4-61.9% using dynamic and hepatobiliary phase images. PPV for HCC ranged from 88.6% to 97.4% across readers, agents, and image sets. CONCLUSION. Sensitivity for HCC was higher for gadobenate than for gadoxetate, whether using dynamic images alone or dynamic and hepatobiliary phase images; the improved sensitivity using gadobenate was more pronounced for small HCCs. Whereas hepatobiliary phase images improved sensitivity for both agents, sensitivity of gadobenate using dynamic images alone compared favorably with that of gadoxetate using dynamic and hepatobiliary phase images. CLINICAL IMPACT. The findings support gadobenate as a preferred agent over gadoxetate when performing liver MRI in patients at high risk for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Organometallic Compounds , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Contrast Media , Female , Gadolinium DTPA , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Magnetic Resonance Imaging/methods , Male , Meglumine , Middle Aged , Prospective Studies , Retrospective Studies , Sensitivity and Specificity
12.
Bioorg Chem ; 119: 105506, 2022 02.
Article in English | MEDLINE | ID: mdl-34896920

ABSTRACT

Diabetes mellitus is a chronic metabolic disorder with increasing prevalence and long-term complications. The aim of this study was to identify α-glucosidase inhibitory compounds with potential anti-hyperglycemic activity. For this purpose, a series of new clioquinol derivatives 2a-11a was synthesized, and characterized by various spectroscopic techniques. The enzyme inhibitory activities of the resulting derivatives were assessed using an in-vitro mechanism-based assay. All the tested compounds 2a-11a of the series showed a significant α-glucosidase inhibition with IC50 values 43.86-325.81 µM, as compared to the standard drug acarbose 1C50: 875.75 ± 2.08 µM. Among them, compounds 4a, 5a, 10a, and 11a showed IC50 values of 105.51 ± 2.41, 119.24 ± 2.37, 99.15 ± 2.06, and 43.86 ± 2.71 µM, respectively. Kinetic study of the active analogues showed competitive, non-competitive, and mixed-type inhibitions. Furthermore, the molecular docking study was performed to elucidate the binding interactions of most active analogues with the various sites of α-glucosidase enzyme. The results indicate that these compounds have the potential to be further studied as new anti-diabetic agents.


Subject(s)
Clioquinol/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , alpha-Glucosidases/metabolism , Cells, Cultured , Clioquinol/chemical synthesis , Clioquinol/chemistry , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Kinetics , Molecular Structure , Structure-Activity Relationship
13.
BMC Musculoskelet Disord ; 23(1): 818, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36042462

ABSTRACT

BACKGROUND: Skeletal dysplasia is a heterogeneous group of disorders. Spondyloepiphyseal dysplasias comprise one subgroup. Deficiency of carbohydrate sulfotransferase 3 has been reported in a small number of patients with recessively inherited spondyloepiphyseal dysplasia with joint dislocation, short stature and scoliosis. We report here molecular and clinical findings of affected individuals in three consanguineous Pakistani families. Affected individuals in all three families had a uniform phenotype including severe short stature, multiple dislocated joints, progressive scoliosis and facial dysmorphism. METHODS: Clinical evaluation was done for three unrelated families. Radiological survey of bones was completed for patients from two of the families. Whole exome sequencing index patients from each family was performed followed by Sanger sequencing for validation of segregation of identified variants in respective families. In-silico analysis for determining pathogenicity of identified variants and conservation was done. RESULTS: Whole-exome sequencing revealed biallelic variants c.590 T > C;p.(Leu197Pro), c.603C > A;p.(Tyr201Ter) and c.661C > T;p.(Arg221Cys) in CHST3 (NM_004273.5) in the three families with eight, five and two affected individuals, respectively. Contrary to previous reports, affected individuals in none of the families exhibited a hearing loss. CONCLUSION: We describe genotypic and phenotypic findings of three unrelated families with spondyloepiphyseal dysplasia. Our study confirms phenotypic variability and adds to the genotypic spectrum of spondyloepiphyseal dysplasia.


Subject(s)
Joint Dislocations , Osteochondrodysplasias , Scoliosis , Sulfotransferases , Humans , Mutation , Osteochondrodysplasias/congenital , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Pakistan , Pedigree , Phenotype , Sulfotransferases/genetics , Carbohydrate Sulfotransferases
14.
Int J Mol Sci ; 23(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36499182

ABSTRACT

Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which defines the viscoelastic properties of wheat dough. The synthesis of these storage proteins is controlled by the endoplasmic reticulum (ER) and is directed into the vacuole via the Golgi apparatus. In the present study, transcriptome analysis was used to explore the potential mechanism within critical stages of grain development of wheat cultivar "Shaannong 33" and its sister line used as the control (CK). Samples were collected at 10 DPA (days after anthesis), 14 DPA, 20 DPA, and 30 DPA for transcriptomic analysis. The comparative transcriptome analysis identified that a total of 18,875 genes were differentially expressed genes (DEGs) between grains of four groups "T10 vs. CK10, T14 vs. CK14, T20 vs. CK20, and T30 vs. CK30", including 2824 up-regulated and 5423 down-regulated genes in T30 vs. CK30. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment highlighted the maximum number of genes regulating protein processing in the endoplasmic reticulum (ER) during grain enlargement stages (10-20 DPA). In addition, KEGG database analysis reported 1362 and 788 DEGs involved in translation, ribosomal structure, biogenesis, flavonoid biosynthesis pathway and intracellular trafficking, secretion, and vesicular transport through protein processing within ER pathway (ko04141). Notably, consistent with the higher expression of intercellular storage protein trafficking genes at the initial 10 DPA, there was relatively low expression at later stages. Expression levels of nine randomly selected genes were verified by qRT-PCR, which were consistent with the transcriptome data. These data suggested that the initial stages of "cell division" played a significant role in protein quality control within the ER, thus maintaining the protein quality characteristics at grain maturity. Furthermore, our data suggested that the protein synthesis, folding, and trafficking pathways directed by a different number of genes during the grain enlargement stage contributed to the observed high-quality characteristics of gluten protein in Shaannong 33 (Triticum aestivum L.).


Subject(s)
Gene Expression Profiling , Triticum , Triticum/metabolism , Glutens/genetics , Glutens/metabolism , Edible Grain/metabolism , Transcriptome , Protein Transport , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
15.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806344

ABSTRACT

The presence of phyto-hormones in plants at relatively low concentrations plays an indispensable role in regulating crop growth and yield. Salt stress is one of the major abiotic stresses limiting cotton production. It has been reported that exogenous phyto-hormones are involved in various plant defense systems against salt stress. Recently, different studies revealed the pivotal performance of hormones in regulating cotton growth and yield. However, a comprehensive understanding of these exogenous hormones, which regulate cotton growth and yield under salt stress, is lacking. In this review, we focused on new advances in elucidating the roles of exogenous hormones (gibberellin (GA) and salicylic acid (SA)) and their signaling and transduction pathways and the cross-talk between GA and SA in regulating crop growth and development under salt stress. In this review, we not only focused on the role of phyto-hormones but also identified the roles of GA and SA responsive genes to salt stress. Our aim is to provide a comprehensive review of the performance of GA and SA and their responsive genes under salt stress, assisting in the further elucidation of the mechanism that plant hormones use to regulate growth and yield under salt stress.


Subject(s)
Plant Growth Regulators , Salt Stress , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/metabolism , Hormones , Plant Development/genetics , Plant Growth Regulators/metabolism , Plants/metabolism , Salicylic Acid/metabolism , Stress, Physiological/genetics
16.
Pak J Med Sci ; 38(8): 2101-2106, 2022.
Article in English | MEDLINE | ID: mdl-36415230

ABSTRACT

Objectives: To evaluate the serum biochemical levels in celiac disease (CD) patients. Methods: It was a cross-sectional study carried out on 70 subjects, including 40 patients with CD and 30 healthy controls. This study was conducted at Jouf University from November, 2020 to October, 2021. The collected blood specimens were used to perform serum iron, serum lipids, liver enzymes, and human tissue transglutaminase IgA antibodies (anti-HTTG). The hematological parameters including hematocrit and MCV were determined to establish the diagnosis of iron deficiency. Results: Serum iron was significantly lower in patients as compared to the controls. Serum iron, serum HDL, blood hematocrit and MCV were significantly lower in patients than in controls (p = 0.000). Serum levels of liver enzymes (ALT and AST) and serum human tissue transglutaminase antibodies (anti-HTTG) were significantly higher in patients than in controls (p = 0.000). The correlation studies established the negative correlation of anti-HTTG IgA with serum iron (r = -0.991, p = 0.000), hematocrit (r = -0.967, p = 0.000) and MCV (r = -0.946, p = 0.000) in patients. Conclusion: The serum iron was remarkably reduced in CD patients. A negative correlation was found between anti-HTTG IgA and serum iron, while a positive serum iron was correlated with hematocrit and MCV in CD patients.

17.
Nanotechnology ; 32(50)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34587602

ABSTRACT

Increasing requirements for wearable devices stimulate the development of flexible energy storage components. Herein, a flexible integrated electrode consisting of SnS2nanosheet arraysin situanchored on the functionalized carbon cloth was prepared via a facile one-step hydrothermal method. Through pretreatment of carbon cloth, rough morphology is appeared on the surface of carbon fiber, which is conducive to optimizing the accessible load of SnS2. The SnS2nanosheet arrays and the carbon fiber as conductive skeleton cooperate with each other to provide a highly open surface, leading to the enhancement in capacitance (194.4 mF cm-2) and the outstanding retention after long-term service (86.5% after 10 000 cycles). A quasi-solid-state asymmetric flexible supercapacitor was assembled to evaluate the practical application under various conditions, suggesting satisfactory electrochemical performance as a maximum energy density of 10.95µWh cm-2at the power density of 4.75 mW cm-2and mechanical stability under actual conditions.

18.
Nanotechnology ; 32(38)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34139684

ABSTRACT

High energy-density supercapacitors (SCs) with long operating life, cost-effective, and competitive cycling performance is attracted great research attention to competing in the requirements of the modern age. However, despite these benefits, SC hampers inadequate rate-capability and structural deterioration, which primarily affects its commercialization. Herein, ultra-thin two-dimensional (2D) ZnCo2O4nanosheets arein situanchored on the conductive surface of nickel foam (denoted as ZCO@NF) by hydrothermal process. The binder-free ZCO@NF is employed as an electrode for SCs and shows impressive charge storage properties. ZCO@NF electrode exhibited a high capacitance of 1250 (750) and 733 F g-1(440 C g-1) at 2.5 and 20 A g-1, respectively, demonstrating the outstanding rate-capability of 58.6% even at 8 times larger current density. Furthermore, the ZCO@NF electrode exhibits admirable capacitance retention of 96.5% after 10 000 cycles. This impressive performance of the ZCO@NF electrode is attributed to the high surface area which gives a short distance for ion/electron transfer, a high conductivity with extensive electroactive cities, and strong structural stability. The binder-free approach provides a strong relationship between the current collector and the active material, which turns into improved electrochemical operation as an electrode material for SCs.

19.
Environ Geochem Health ; 43(12): 5025-5035, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33891257

ABSTRACT

Arsenic (As) is one of the most toxic metalloids for humans. Above permissible levels of As cause severe health implications. Contaminated drinking water and food items may be the leading sources of As exposure to people all around the world. The current study assessed the levels of As in drinking water, vegetables, irrigation water, agricultural soils, and the human population (adult women and men) of rural and peri-urban areas of Multan (Pakistan). For a comparison between peri-urban (exposed site) and rural areas (control site), we sampled irrigation water, vegetables and vegetable-grown soils, drinking water, and human blood. In all sample types, As concentration was significantly higher at exposed site than at control site. Alarmingly, As concentration in drinking groundwater (34 µg As L-1) of exposed site was 3.4-folds higher than the permissible limit (set by WHO). Among the studied vegetables, the cumulative daily dietary intake of As was recorded maximum by the consumption of okra (474 ng d-1 on exposed site) and minimum by long melon (1 ng d-1 on control site). However, As intake via drinking water was estimated to contribute ≥ 98% of total As intake at both sites. Hence, the health risks associated with drinking As-contaminated groundwater were recorded much higher than the health risks associated with the consumption of As-contaminated vegetables. Blood As levels in most of the subjects at exposed site exceeded the safe limit of 12 µg L-1. Conclusively, the findings of the current study indicated that drinking contaminated groundwater may be the major cause of As-associated health risks in the region.


Subject(s)
Arsenic , Groundwater , Soil Pollutants , Water Pollutants, Chemical , Adult , Arsenic/analysis , Environmental Monitoring , Humans , Pakistan , Risk Assessment , Soil Pollutants/analysis , Vegetables , Wastewater , Water Pollutants, Chemical/analysis
20.
J Pak Med Assoc ; 71(7): 1856-1861, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34410261

ABSTRACT

Exosomes are 20-150nm cell secreting nano-bodies that helps in the transportation of various biomolecules, including micro ribonucleic acid (miRNA) in the human body during both normal and diseased conditions. The current review was planned to summarise the role of miRNA carried by circulatory exosomes in cancer. miRNA is responsible for contribution in cancer, regulation of gene expression, interfering in biological pathways, gene silencing or amplification, and also has a role in cancer resistance. (miRNA) plays a dynamic role in this process by regulating the genes related to drug resistance, cell proliferation, cell cycle and apoptosis through a tissue-specific fashion. Owing to its significances, micro ribonucleic acid has been reported to be the key regulator of cancer, metastasis and also a factor in cancer resistance, and is a better source of possible potential diagnostic biomarkers. Though many studies have explored the biological roles of RNAs in cancer, many facts are needed to be investigated for clinical applications.


Subject(s)
Exosomes , MicroRNAs , Neoplasms , Apoptosis , Cell Proliferation , Exosomes/genetics , Humans , MicroRNAs/genetics , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL