Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Publication year range
1.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38697107

ABSTRACT

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Subject(s)
Immunotherapy , Lipids , RNA , Tumor Microenvironment , Animals , Dogs , Female , Humans , Mice , Antigens, Neoplasm/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Glioblastoma/therapy , Glioblastoma/immunology , Glioma/therapy , Glioma/immunology , Immunotherapy/methods , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology , RNA/chemistry , RNA/therapeutic use , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lipids/chemistry
2.
Curr Oncol Rep ; 25(8): 847-855, 2023 08.
Article in English | MEDLINE | ID: mdl-37160547

ABSTRACT

PURPOSE OF REVIEW: Correlative studies should leverage clinical trial frameworks to conduct biospecimen analyses that provide insight into the bioactivity of the intervention and facilitate iteration toward future trials that further improve patient outcomes. In pediatric cellular immunotherapy trials, correlative studies enable deeper understanding of T cell mobilization, durability of immune activation, patterns of toxicity, and early detection of treatment response. Here, we review the correlative science in adoptive cell therapy (ACT) for childhood central nervous system (CNS) tumors, with a focus on existing chimeric antigen receptor (CAR) and T cell receptor (TCR)-expressing T cell therapies. RECENT FINDINGS: We highlight long-standing and more recently understood challenges for effective alignment of correlative data and offer practical considerations for current and future approaches to multi-omic analysis of serial tumor, serum, and cerebrospinal fluid (CSF) biospecimens. We highlight the preliminary success in collecting serial cytokine and proteomics from patients with CNS tumors on ACT clinical trials.


Subject(s)
Central Nervous System Neoplasms , Receptors, Chimeric Antigen , Humans , Child , Immunotherapy, Adoptive , Central Nervous System Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
3.
Acta Neuropathol ; 141(5): 771-785, 2021 05.
Article in English | MEDLINE | ID: mdl-33619588

ABSTRACT

Recent genomic studies have shed light on the biology and inter-tumoral heterogeneity underlying pineal parenchymal tumors, in particular pineoblastomas (PBs) and pineal parenchymal tumors of intermediate differentiation (PPTIDs). Previous reports, however, had modest sample sizes and lacked the power to integrate molecular and clinical findings. The different proposed molecular group structures also highlighted a need to reach consensus on a robust and relevant classification system. We performed a meta-analysis on 221 patients with molecularly characterized PBs and PPTIDs. DNA methylation profiles were analyzed through complementary bioinformatic approaches and molecular subgrouping was harmonized. Demographic, clinical, and genomic features of patients and samples from these pineal tumor groups were annotated. Four clinically and biologically relevant consensus PB groups were defined: PB-miRNA1 (n = 96), PB-miRNA2 (n = 23), PB-MYC/FOXR2 (n = 34), and PB-RB1 (n = 25). A final molecularly distinct group, designated PPTID (n = 43), comprised histological PPTID and PBs. Genomic and transcriptomic profiling allowed the characterization of oncogenic drivers for individual tumor groups, specifically, alterations in the microRNA processing pathway in PB-miRNA1/2, MYC amplification and FOXR2 overexpression in PB-MYC/FOXR2, RB1 alteration in PB-RB1, and KBTBD4 insertion in PPTID. Age at diagnosis, sex predilection, and metastatic status varied significantly among tumor groups. While patients with PB-miRNA2 and PPTID had superior outcome, survival was intermediate for patients with PB-miRNA1, and dismal for those with PB-MYC/FOXR2 or PB-RB1. Reduced-dose CSI was adequate for patients with average-risk, PB-miRNA1/2 disease. We systematically interrogated the clinical and molecular heterogeneity within pineal parenchymal tumors and proposed a consensus nomenclature for disease groups, laying the groundwork for future studies as well as routine use in tumor diagnostic classification and clinical trial stratification.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Pineal Gland/pathology , Pinealoma/genetics , Pinealoma/pathology , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , DNA Methylation , Female , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Male , Middle Aged , Transcriptome , Young Adult
4.
Pediatr Blood Cancer ; 68(2): e28756, 2021 02.
Article in English | MEDLINE | ID: mdl-33025730

ABSTRACT

BACKGROUND: Central nervous system (CNS) malignancies are the most common solid tumors among children, and novel therapies are needed to help improve survival. Pomalidomide is an immunomodulatory agent that displays antiangiogenic and cytotoxic activity, making it an appropriate candidate to explore in pediatric CNS tumors. METHODS: A phase 1 first in pediatric trial of pomalidomide was conducted in children with recurrent, progressive, and refractory CNS tumors. The primary objective was to determine the maximum tolerated dose (MTD) and/or recommended phase 2 dose (RP2D) when given orally once daily for 21 consecutive days of a 28-day cycle. Once the MTD was established, 12 additional patients were enrolled on expansion cohorts based on age and steroid use. RESULTS: Twenty-nine children were enrolled and 25 were evaluable for dose-limiting toxicity (DLT). The MTD was 2.6 mg/m2 (dose level 2). Four DLTs were observed in three patients at dose level 3 (3.4 mg/m2 ) includeding grade 3 diarrhea, grade 3 thrombocytopenia, grade 3 lung infection, and grade 4 neutropenia. The most common adverse events were grade 1 and 2 myelosuppression. One patient with an oligodendroglioma had stable disease for nine cycles, and a second patient with an anaplastic pleomorphic xanthoastrocytoma achieved a sustained partial response. Immunologic analyses suggested that pomalidomide triggers immunomodulation. CONCLUSIONS: The MTD of pomalidomide is 2.6 mg/m2 . It was well tolerated, and immune correlates showed a serum immune response. These data led to an industry-sponsored phase 2 trial of pomalidomide monotherapy in children with recurrent brain tumors (NCT03257631).


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Central Nervous System Neoplasms/drug therapy , Thalidomide/analogs & derivatives , Adolescent , Angiogenesis Inhibitors/pharmacokinetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Central Nervous System Neoplasms/mortality , Central Nervous System Neoplasms/pathology , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Humans , Immunomodulation/drug effects , Male , Thalidomide/pharmacokinetics , Thalidomide/therapeutic use , Young Adult
5.
Pediatr Blood Cancer ; 68(4): e28879, 2021 04.
Article in English | MEDLINE | ID: mdl-33405376

ABSTRACT

BACKGROUND: Disruption of cell-cycle regulators is a potential therapeutic target for brain tumors in children and adolescents. The aim of this study was to determine the maximum tolerated dose (MTD) and describe toxicities related to palbociclib, a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor in pediatric patients with progressive/refractory brain tumors with intact retinoblastoma protein. METHODS: Palbociclib was administered orally starting at 50 mg/m2 daily for the first 21 days of a 28-day course. Dose escalation was according to the Rolling-6 statistical design in less heavily (stratum I) and heavily pretreated (stratum II) patients, and MTD was determined separately for each group. Pharmacokinetic studies were performed during the first course, and pharmacodynamic studies were conducted to evaluate relationships between drug levels and toxicities. RESULTS: A total of 21 patients were enrolled on stratum I and 14 patients on stratum II. The MTD for both strata was 75 mg/m2 . Palbociclib absorption (mean Tmax between 4.9 and 6.6 h) and elimination (mean half-life between 11.3 and 19.5 h) were assessed. The most common toxicity was myelosuppression. Higher palbociclib exposure was associated with grade 3/4 neutropenia and leukopenia. Dose limiting toxicities included grade 4 neutropenia and grade 3 thrombocytopenia and dehydration. No patients had an objective response to palbociclib therapy. CONCLUSIONS: Palbociclib was safely administered to children and adolescents at a dosage of 75 mg/m2 for 21 consecutive days followed by seven days of rest in both strata. Future studies will establish its optimal utilization in pediatric patients with brain tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Adolescent , Adult , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Brain Neoplasms/pathology , Child , Child, Preschool , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Disease Progression , Female , Humans , Male , Piperazines/adverse effects , Piperazines/pharmacokinetics , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Pyridines/adverse effects , Pyridines/pharmacokinetics , Young Adult
6.
Acta Neuropathol ; 139(2): 223-241, 2020 02.
Article in English | MEDLINE | ID: mdl-31820118

ABSTRACT

Pineoblastomas (PBs) are rare, aggressive pediatric brain tumors of the pineal gland with modest overall survival despite intensive therapy. We sought to define the clinical and molecular spectra of PB to inform new treatment approaches for this orphan cancer. Tumor, blood, and clinical data from 91 patients with PB or supratentorial primitive neuroectodermal tumor (sPNETs/CNS-PNETs), and 2 pineal parenchymal tumors of intermediate differentiation (PPTIDs) were collected from 29 centres in the Rare Brain Tumor Consortium. We used global DNA methylation profiling to define a core group of PB from 72/93 cases, which were delineated into five molecular sub-groups. Copy number, whole exome and targeted sequencing, and miRNA expression analyses were used to evaluate the clinico-pathologic significance of each sub-group. Tumors designated as group 1 and 2 almost exclusively exhibited deleterious homozygous loss-of-function alterations in miRNA biogenesis genes (DICER1, DROSHA, and DGCR8) in 62 and 100% of group 1 and 2 tumors, respectively. Recurrent alterations of the oncogenic MYC-miR-17/92-RB1 pathway were observed in the RB and MYC sub-group, respectively, characterized by RB1 loss with gain of miR-17/92, and recurrent gain or amplification of MYC. PB sub-groups exhibited distinct clinical features: group 1-3 arose in older children (median ages 5.2-14.0 years) and had intermediate to excellent survival (5-year OS of 68.0-100%), while Group RB and MYC PB patients were much younger (median age 1.3-1.4 years) with dismal survival (5-year OS 37.5% and 28.6%, respectively). We identified age < 3 years at diagnosis, metastatic disease, omission of upfront radiation, and chr 16q loss as significant negative prognostic factors across all PBs. Our findings demonstrate that PB exhibits substantial molecular heterogeneity with sub-group-associated clinical phenotypes and survival. In addition to revealing novel biology and therapeutics, molecular sub-grouping of PB can be exploited to reduce treatment intensity for patients with favorable biology tumors.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Pineal Gland , Pinealoma/genetics , Pinealoma/pathology , Adolescent , Adult , Age Factors , Brain Neoplasms/mortality , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , MicroRNAs/metabolism , Mutation/genetics , Pinealoma/mortality , Registries , Survival Rate , Young Adult
7.
J Transl Med ; 17(1): 321, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31547819

ABSTRACT

BACKGROUND: Medulloblastoma (MB), the most common pediatric brain cancer, presents with a poor prognosis in a subset of patients with high risk disease, or at recurrence, where current therapies are ineffective. Cord blood (CB) natural killer (NK) cells may be promising off-the-shelf effector cells for immunotherapy due to their recognition of malignant cells without the need for a known target, ready availability from multiple banks, and their potential to expand exponentially. However, they are currently limited by immune suppressive cytokines secreted in the MB tumor microenvironment including Transforming Growth Factor ß (TGF-ß). Here, we address this challenge in in vitro models of MB. METHODS: CB-derived NK cells were modified to express a dominant negative TGF-ß receptor II (DNRII) using retroviral transduction. The ability of transduced CB cells to maintain function in the presence of medulloblastoma-conditioned media was then assessed. RESULTS: We observed that the cytotoxic ability of nontransduced CB-NK cells was reduced in the presence of TGF-ß-rich, medulloblastoma-conditioned media (21.21 ± 1.19% killing at E:T 5:1 in the absence vs. 14.98 ± 2.11% in the presence of medulloblastoma-conditioned media, n = 8, p = 0.02), but was unaffected in CB-derived DNRII-transduced NK cells (21.11 ± 1.84% killing at E:T 5:1 in the absence vs. 21.81 ± 3.37 in the presence of medulloblastoma-conditioned media, n = 8, p = 0.85. We also observed decreased expression of CCR2 in untransduced NK cells (mean CCR2 MFI 826 ± 117 in untransduced NK + MB supernatant from mean CCR2 MFI 1639.29 ± 215 in no MB supernatant, n = 7, p = 0.0156), but not in the transduced cells. Finally, we observed that CB-derived DNRII-transduced NK cells may protect surrounding immune cells by providing a cytokine sink for TGF-ß (decreased TGF-ß levels of 610 ± 265 pg/mL in CB-derived DNRII-transduced NK cells vs. 1817 ± 342 pg/mL in untransduced cells; p = 0.008). CONCLUSIONS: CB NK cells expressing a TGF-ß DNRII may have a functional advantage over unmodified NK cells in the presence of TGF-ß-rich MB, warranting further investigation on its potential applications for patients with medulloblastoma.


Subject(s)
Cerebellar Neoplasms/immunology , Killer Cells, Natural/immunology , Medulloblastoma/immunology , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Down-Regulation , Fetal Blood/cytology , Humans , Killer Cells, Natural/transplantation , Neutralization Tests , Receptors, CCR2/metabolism , Transplantation, Homologous
8.
Acta Neuropathol ; 136(2): 227-237, 2018 08.
Article in English | MEDLINE | ID: mdl-30019219

ABSTRACT

Posterior fossa ependymoma comprise three distinct molecular variants, termed PF-EPN-A (PFA), PF-EPN-B (PFB), and PF-EPN-SE (subependymoma). Clinically, they are very disparate and PFB tumors are currently being considered for a trial of radiation avoidance. However, to move forward, unraveling the heterogeneity within PFB would be highly desirable. To discern the molecular heterogeneity within PFB, we performed an integrated analysis consisting of DNA methylation profiling, copy-number profiling, gene expression profiling, and clinical correlation across a cohort of 212 primary posterior fossa PFB tumors. Unsupervised spectral clustering and t-SNE analysis of genome-wide methylation data revealed five distinct subtypes of PFB tumors, termed PFB1-5, with distinct demographics, copy-number alterations, and gene expression profiles. All PFB subtypes were distinct from PFA and posterior fossa subependymomas. Of the five subtypes, PFB4 and PFB5 are more discrete, consisting of younger and older patients, respectively, with a strong female-gender enrichment in PFB5 (age: p = 0.011, gender: p = 0.04). Broad copy-number aberrations were common; however, many events such as chromosome 2 loss, 5 gain, and 17 loss were enriched in specific subtypes and 1q gain was enriched in PFB1. Late relapses were common across all five subtypes, but deaths were uncommon and present in only two subtypes (PFB1 and PFB3). Unlike the case in PFA ependymoma, 1q gain was not a robust marker of poor progression-free survival; however, chromosome 13q loss may represent a novel marker for risk stratification across the spectrum of PFB subtypes. Similar to PFA ependymoma, there exists a significant intertumoral heterogeneity within PFB, with distinct molecular subtypes identified. Even when accounting for this heterogeneity, extent of resection remains the strongest predictor of poor outcome. However, this biological heterogeneity must be accounted for in future preclinical modeling and personalized therapies.


Subject(s)
DNA Copy Number Variations/genetics , Ependymoma/classification , Ependymoma/genetics , Infratentorial Neoplasms/classification , Infratentorial Neoplasms/genetics , Adolescent , Adult , Age Factors , Child , Cohort Studies , DNA Methylation/genetics , Ependymoma/pathology , Ependymoma/surgery , Female , Gene Expression Profiling , Humans , Infratentorial Neoplasms/pathology , Infratentorial Neoplasms/surgery , Kaplan-Meier Estimate , Male , Microarray Analysis , Middle Aged , Young Adult
9.
Pediatr Blood Cancer ; 65(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-29090526

ABSTRACT

BACKGROUND: We conducted a phase II study of oral capecitabine rapidly disintegrating tablets given concurrently with radiation therapy (RT) to assess progression-free survival (PFS) in children with newly diagnosed diffuse intrinsic pontine gliomas (DIPG). PATIENTS AND METHODS: Children 3-17 years with newly diagnosed DIPG were eligible. Capecitabine, 650 mg/m2 /dose BID (maximum tolerated dose [MTD] in children with concurrent radiation), was administered for 9 weeks starting the first day of RT. Following a 2-week break, three courses of capecitabine, 1,250 mg/m2 /dose BID for 14 days followed by a 7-day rest, were administered. As prospectively designed, 10 evaluable patients treated at the MTD on the phase I trial were included in the phase II analyses. The design was based on comparison of the PFS distribution to a contemporary historical control (n = 140) with 90% power to detect a 15% absolute improvement in the 1-year PFS with a type-1 error rate, α = 0.10. RESULTS: Forty-four patients were evaluable for the phase II objectives. Capecitabine and RT was well tolerated with low-grade palmar plantar erythrodyesthesia, increased alanine aminotransferase, cytopenias, and vomiting the most commonly reported toxicities. Findings were significant for earlier progression with 1-year PFS of 7.21% (SE = 3.47%) in the capecitabine-treated cohort versus 15.59% (SE = 3.05%) in the historical control (P = 0.007), but there was no difference for overall survival (OS) distributions (P = 0.30). Tumor enhancement at diagnosis was associated with shorter PFS and OS. Capecitabine was rapidly absorbed and converted to its metabolites. CONCLUSION: Capecitabine did not improve the outcome for children with newly diagnosed DIPG.


Subject(s)
Brain Stem Neoplasms/therapy , Capecitabine/administration & dosage , Chemoradiotherapy , Glioma/therapy , Administration, Oral , Adolescent , Brain Stem Neoplasms/diagnosis , Child , Child, Preschool , Female , Follow-Up Studies , Glioma/diagnosis , Humans , Male , Prospective Studies , Tablets
10.
Pediatr Blood Cancer ; 63(3): 547-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26488903

ABSTRACT

A 3-year-old boy with sickle cell anemia (SCA) presented with progressive daily emesis and was found to have an anaplastic ependymoma. Radiation therapy and chemotherapy are usually employed after subtotal resections of anaplastic ependymomas, although the benefits from chemotherapy are unclear. To mitigate the risks of adjuvant treatment in this patient at risk for SCA-associated vasculopathy, renal impairment, and other end-organ damage, proton beam irradiation without chemotherapy was chosen. Scheduled packed red blood cell transfusions were instituted to maintain sickle hemoglobin levels less than 30%. This case highlights treatment complexities for malignant brain tumors in patients predisposed to treatment-related adverse effects.


Subject(s)
Anemia, Sickle Cell/complications , Anemia, Sickle Cell/therapy , Brain Neoplasms/complications , Ependymoma/complications , Brain Neoplasms/diagnosis , Child, Preschool , Ependymoma/diagnosis , Humans , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL