Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Inflammopharmacology ; 31(6): 3127-3142, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37526838

ABSTRACT

Methotrexate (MTX) and diacerein (DIA) are two of the most potent disease-modifying anti-rheumatic drugs used for the treatment of rheumatoid arthritis (RA). DIA has reflected some GIT and hepatobiliary manifestations in numerous cases. It undergoes biotransformation in the liver into the active metabolite rhein (RH) which is characterized by its excellent anti-inflammatory activity and lower side effects. However, RH's hydrophobic nature and low bioavailability do not encourage its use in RA. The current study aims to use RH in combination with MTX in targeted solid lipid nanoparticles (RH-MTX-SLNs) for better effectiveness and shadowing light on its possible mechanistic pathways. RH-MTX-SLNs were prepared and assessed for their quality attributes. The effect of the formulation was assessed in-vivo in an adjuvant arthritis animal model investigating the role of the endoplasmic reticulum stress (ERS)-induced apoptosis. Results revealed that RH-MTX-SLNs were in the suitable nanosized range with high negative zeta potential indicating good stability. In-vivo, RH-MTX-SLNs significantly improved all measured inflammatory and arthritic markers, confirmed by electron microscopy and histology examination of the joints. Besides, the formulation was able to alter the ERS-mediated apoptosis. In conclusion, RH-MTX-SLNs can represent a promising therapeutic approach for RA showing significant anti-arthritic activity.


Subject(s)
Antirheumatic Agents , Arthritis, Experimental , Arthritis, Rheumatoid , Nanoparticles , Animals , Methotrexate/pharmacology , Methotrexate/therapeutic use , Arthritis, Experimental/metabolism , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/metabolism
2.
Environ Res ; 207: 112643, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34973941

ABSTRACT

The present study aims to assess the probable lifetime cancer and non-cancer risks of exposure to the trihalomethanes in Egypt's drinking water through ingestion, dermal contact, and inhalation. A total of 1667 drinking water samples were collected from twenty-three Egyptian governorates over a three-years period. The concentrations of total trihalomethanes ranged between 29.07 and 86.01 µg/L and were always below the maximum contamination level recommended by the Egyptian standards (100 µg/L). Chloroform was the most prominent trihalomethanes species, while bromoform was rarely detected. The cancer risk study revealed that, among the investigated paths, inhalation poses the greatest risk. And bromodichloromethane had the highest impact to cancer (69%), followed by chlorodibromomethane (28%). Geographically, the highest cancer risk value was found in Matruh governorate (42.2 × 10-6) and the lowest was in Minya governorate (1.0 × 10-6). The cancer risk for the studied governorates, except Minya governorate, was higher than the level recommended by the USEPA (1.0 × 10-6). Hazard index (HI) study revealed that the ingestion pathway caused higher HI values than the dermal pathway and that chloroform had the highest contribution to HI value. However, the values of HI were below unity in all studied governorates demonstrating that there would be negligible non-cancer risk.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Drinking Water/analysis , Egypt , Humans , Risk Assessment , Trihalomethanes/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL