Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(6)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35328517

ABSTRACT

Somatostatin is an inhibitory peptide, which regulates the release of several hormones, and affects neurotransmission and cell proliferation via its five Gi protein-coupled receptors (SST1-5). Although its endocrine regulatory and anti-tumour effects have been thoroughly studied, little is known about its effect on the vascular system. The aim of the present study was to analyse the effects and potential mechanisms of somatostatin on endothelial barrier function. Cultured human umbilical vein endothelial cells (HUVECs) express mainly SST1 and SST5 receptors. Somatostatin did not affect the basal HUVEC permeability, but primed HUVEC monolayers for thrombin-induced hyperpermeability. Western blot data demonstrated that somatostatin activated the phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt) and p42/44 mitogen-activated protein kinase (MAPK) pathways by phosphorylation. The HUVEC barrier destabilizing effects were abrogated by pre-treating HUVECs with mitogen-activated protein kinase kinase/extracellular signal regulated kinase (MEK/ERK), but not the Akt inhibitor. Moreover, somatostatin pre-treatment amplified vascular endothelial growth factor (VEGF)-induced angiogenesis (3D spheroid formation) in HUVECs. In conclusion, the data demonstrate that HUVECs under quiescence conditions express SST1 and SST5 receptors. Moreover, somatostatin primes HUVECs for thrombin-induced hyperpermeability mainly via the activation of MEK/ERK signalling and promotes HUVEC proliferation and angiogenesis in vitro.


Subject(s)
Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , Cells, Cultured , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Neovascularization, Pathologic/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Somatostatin/metabolism , Somatostatin/pharmacology , Thrombin/metabolism , Thrombin/pharmacology , Vascular Endothelial Growth Factor A/metabolism
2.
Hum Mutat ; 42(10): 1321-1335, 2021 10.
Article in English | MEDLINE | ID: mdl-34265170

ABSTRACT

Hereditary deafness is clinically and genetically heterogeneous. We investigated deafness segregating as a recessive trait in two families. Audiological examinations revealed an asymmetric mild to profound hearing loss with childhood or adolescent onset. Exome sequencing of probands identified a homozygous c.475G>A;p.(Glu159Lys) variant of CLDN9 (NM_020982.4) in one family and a homozygous c.370_372dupATC;p.(Ile124dup) CLDN9 variant in an affected individual of a second family. Claudin 9 (CLDN9) is an integral membrane protein and constituent of epithelial bicellular tight junctions (TJs) that form semipermeable, paracellular barriers between inner ear perilymphatic and endolymphatic compartments. Computational structural modeling predicts that substitution of a lysine for glutamic acid p.(Glu159Lys) alters one of two cis-interactions between CLDN9 protomers. The p.(Ile124dup) variant is predicted to locally misfold CLDN9 and mCherry tagged p.(Ile124dup) CLDN9 is not targeted to the HeLa cell membrane. In situ hybridization shows that mouse Cldn9 expression increases from embryonic to postnatal development and persists in adult inner ears coinciding with prominent CLDN9 immunoreactivity in TJs of epithelia outlining the scala media. Together with the Cldn9 deaf mouse and a homozygous frameshift of CLDN9 previously associated with deafness, the two bi-allelic variants of CLDN9 described here point to CLDN9 as a bona fide human deafness gene.


Subject(s)
Claudins , Deafness , Adolescent , Animals , Child , Claudins/genetics , Deafness/genetics , HeLa Cells , Homozygote , Humans , Mice , Mutation , Pedigree
3.
JCI Insight ; 8(17)2023 09 08.
Article in English | MEDLINE | ID: mdl-37561591

ABSTRACT

Pediatric cardiomyopathy (CM) represents a group of rare, severe disorders that affect the myocardium. To date, the etiology and mechanisms underlying pediatric CM are incompletely understood, hampering accurate diagnosis and individualized therapy development. Here, we identified biallelic variants in the highly conserved flightless-I (FLII) gene in 3 families with idiopathic, early-onset dilated CM. We demonstrated that patient-specific FLII variants, when brought into the zebrafish genome using CRISPR/Cas9 genome editing, resulted in the manifestation of key aspects of morphological and functional abnormalities of the heart, as observed in our patients. Importantly, using these genetic animal models, complemented with in-depth loss-of-function studies, we provided insights into the function of Flii during ventricular chamber morphogenesis in vivo, including myofibril organization and cardiomyocyte cell adhesion, as well as trabeculation. In addition, we identified Flii function to be important for the regulation of Notch and Hippo signaling, crucial pathways associated with cardiac morphogenesis and function. Taken together, our data provide experimental evidence for a role for FLII in the pathogenesis of pediatric CM and report biallelic variants as a genetic cause of pediatric CM.


Subject(s)
Cardiomyopathies , Microfilament Proteins , Animals , Cell Adhesion/genetics , Microfilament Proteins/genetics , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Zebrafish/genetics , Trans-Activators , Cardiomyopathies/genetics
4.
Gene ; 705: 109-112, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31028865

ABSTRACT

Variants of KCNQ4 are one of the most common causes of dominantly inherited nonsyndromic hearing loss. We investigated a consanguineous family in which two individuals had prelignual hearing loss, apparently inherited in a recessive mode. Whole-exome sequencing analyses demonstrated genetic heterogeneity as variants in two different genes segregated with the phenotype in two branches of the family. Members in one branch were homozygous for a pathogenic variant of TMC1. The other two affected individuals were homozygous for a missense pathogenic variant in KCNQ4 c.872C>T; p.(Pro291Leu). These two individuals had prelingual, progressive moderate to severe hearing loss, while a heterozygous carrier had late onset mild hearing loss. Our work demonstrates that p.Pro291L variant is semi-dominantly inherited. This is the first report of semi-dominance of a KCNQ4 variant.


Subject(s)
Deafness/genetics , Exome Sequencing/methods , KCNQ Potassium Channels/genetics , Mutation, Missense , Age of Onset , Consanguinity , Female , Genetic Heterogeneity , Genetic Predisposition to Disease , Humans , Leucine/genetics , Male , Pedigree , Proline/genetics
SELECTION OF CITATIONS
SEARCH DETAIL