Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Environ Sci Technol ; 52(10): 5571-5580, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29660979

ABSTRACT

Perfluoroalkyl acids (PFAAs) were determined in European starling ( Sturnus vulgaris) eggs collected between 2009 and 2014 from industrial, rural/agricultural, and landfill locations within five urban centers across Canada. Within each urban center, perfluoroalkyl sulfonic acid (PFSA) concentrations were generally greater in starling eggs collected from urban/industrial locations and PFSAs and perfluoroalkyl carboxylic acids (PFCAs) were generally greater at landfills compared to rural and remote locations. However, the relative importance of urban/industrial versus landfill locations as potential sources was chemical- and location-specific. PFSA concentrations in eggs collected from nonlandfills were positively correlated with human population. Despite the 2000 to 2002 phase-out of perfluorooctanesulfonic acid (PFOS) and its C8 precursors, leaching from consumer products during use likely continues to be a major source to the environment. In comparison, the concentrations of most PFCAs in eggs were not related to population, which supports the hypothesis that atmospheric transport and degradation of precursor chemicals are influencing their spatial trends. PFAA concentrations in eggs from landfills were not correlated with the quantity of waste received by a given landfill. The variability in PFAAs between landfills may be due to the specific composition of waste items.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Starlings , Water Pollutants, Chemical , Animals , Canada , Eggs , Environmental Monitoring , Humans , Waste Disposal Facilities
2.
Ecotoxicology ; 27(5): 539-555, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29623614

ABSTRACT

The concept of the Anthropocene, that humans are now re-engineering global ecosystems, is in part evidenced by the pervasive pollution by persistent organic pollutants (POPs). Certain POPs are hormone mimics and can disrupt endocrine and hence reproductive processes, shown mainly by laboratory studies with model species. There are, in contrast, fewer confirmations of such disruption from eco-epidemiological studies of wild mammals. Here we used the American mink (Neovison vison) as a sentinel species for such a study. Over the period 1998-2006, 161 mink carcasses were obtained from commercial trappers in the Canadian provinces of British Columbia and Ontario. Mink were aged, sexed, measured, and body condition assessed. Livers were analyzed either individually or pooled for organochlorine (OC) pesticides, polychlorinated biphenyls (PCBs), and subsets for polybrominated diphenyl ethers (PBDEs). We primarily addressed whether contaminants affected male reproductive development by measuring baculum size and assessing the influences of age and body condition. We also considered the influence of spatial variation on relative exposure and size of baculum. Statistical models separated by age class revealed that significant relationships between baculum length or mass and juvenile mink were mostly positive, whereas for adults and first year mink they were mostly negative. A significant negative relationship for adult mink was determined between DDE and both baculum length and mass. For juvenile mink we found significant positive relationships between ∑PCBs, DDE and ∑PBDEs with baculum length. Our results provide some indication of negative effects of halogenated contaminants on male reproductive development in wild mink, and the most likely candidate chemical is the confirmed anti-androgenic compound, DDE, rather than PCBs or other compounds.


Subject(s)
Environmental Exposure , Environmental Pollutants/adverse effects , Mink/metabolism , Reproduction/drug effects , Age Factors , Animals , Body Composition/drug effects , British Columbia , Environmental Monitoring , Halogenated Diphenyl Ethers/adverse effects , Hydrocarbons, Chlorinated/adverse effects , Male , Ontario , Organ Size/drug effects , Pesticides/adverse effects , Polychlorinated Biphenyls/adverse effects
3.
Environ Sci Technol ; 47(21): 12238-47, 2013.
Article in English | MEDLINE | ID: mdl-24059974

ABSTRACT

Landfills are used as the primary means for the disposal of municipal solid waste in Canada. In the present study, polybrominated diphenyl ethers (PBDEs) and other flame retardants (FRs) were determined in fresh European starling ( Sturnus vulgaris ) eggs collected in 2009, 2010, and 2011 from nest boxes established within, adjacent to, and 10 and 40 km distant to five major urban centers across Canada, i.e., Vancouver, British Columbia (BC); Calgary, Alberta (AB); Hamilton, Ontario (ON); Montréal, Québec (QC); and Halifax, Nova Scotia (NS). Nest boxes were located in several land use types: urban industrial areas (districts of industrial activity within city limits), landfill sites (adjacent to cities), and rural (agricultural) sites located 10 and 40 km distant from the major urban centers, as well as a national reference site. Of the 14 PBDE congeners and 16 non-PBDE FR substances determined in the starling eggs, BDE-17, -28, -47, -49, -66, -85, -99, -100, -138, -153, -154, -183, and -209, Dechlorane Plus isomers (anti and syn), and bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (BEHTBP) were most frequently quantifiable. The data revealed orders of magnitude greater PBDE concentrations in eggs from starlings nesting in landfill sites (median: 28-280 ng/g wet weight) relative to those from urban industrial and rural environments. However, the percent fractional composition of the PBDE congener patterns did not vary significantly between the types of land uses or between years. Additionally, the median ∑PBDE concentration in eggs from landfill sites and the human population density of the metropolitan region that the landfill serves were highly correlated (r(2) = 0.998, p < 0.001). As the first transcontinental effort in assessing FR contamination in Canadian terrestrial ecosystems, the present study strongly suggest that landfills are an important FR source to starlings nesting nearby and that other terrestrial organisms could also be similarly exposed.


Subject(s)
Ecosystem , Environmental Monitoring , Flame Retardants/analysis , Starlings/metabolism , Waste Disposal Facilities , Animals , Canada , Environmental Pollutants/analysis , Europe , Halogenated Diphenyl Ethers/analysis , Humans , Ovum/chemistry
4.
Environ Pollut ; 279: 116928, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33774363

ABSTRACT

Seabirds are wide-ranging organisms often used to track marine pollution, yet the effect of migration on exposure over the annual cycle is often unclear. We used solar geolocation loggers and stable isotope analysis to study the effects of post breeding dispersal and diet on persistent organic pollutant (POP) and mercury (Hg) burdens in rhinoceros auklets, Cerorhinca monocerata, breeding on islands along the Pacific Coast of Canada. Hg and four classes of POPs were measured in auklet eggs: organochlorine insecticides (OCs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and perfluoralkyl substances (PFASs). Stable isotope values of adult breast feathers grown during winter were used in conjunction with geolocation to elucidate adult wintering latitude. Wintering latitude was the most consistent and significant predictor of some POP and of Hg concentrations in eggs. The magnitude and pattern of exposure varied by contaminant, with ∑PCBs, ∑PBDEs and DDE decreasing with wintering latitude, and mirex, perfluoro-n-tridecanoic acid, and Hg increasing with latitude. We suggest that concentrations of these contaminants in rhinoceros auklet eggs are influenced by variation in uptake at adult wintering locations related to anthropogenic inputs and oceanic and atmospheric transport.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Animals , Canada , Environmental Monitoring , Halogenated Diphenyl Ethers , Islands , Perissodactyla , Persistent Organic Pollutants
5.
Environ Pollut ; 259: 113842, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31926389

ABSTRACT

Assessing the fate of both legacy and newer persistent organic pollutants (POPs) is an ongoing challenge. Top predators, including seabirds, are effective monitors of POPs because they forage over a range of marine habitats, integrating signals over space and time. However, migration patterns can make unravelling contaminant sources, and potentially assessments of the effectiveness of regulations, challenging if chemicals are acquired at distant sites. In 2014, we fitted geolocators on ancient murrelets (Synthliboramphus antiqueus) at four colonies on the Pacific Coast of Canada to obtain movement data throughout an annual cycle. All birds underwent a post-breeding moult in the Bering Sea. Around one-third then returned to overwinter on the British Columbia (BC) coast while the rest migrated to overwinter in waters along the north Asian coast. Such a stark difference in migration destination provided an opportunity to examine the influence of wintering location on contaminant signals. In summer 2015, we collected blood samples from returned geo-tagged birds and analyzed them for a suite of contaminants, including polybrominated diphenyl ethers (PBDEs), non-PBDE halogenated flame retardants, perfluoroalkyl substances (PFASs), organochlorines, and mercury. Feathers were also collected and analyzed for stable isotopes (δ13C, δ15N, and δ34S). We found no significant differences in blood concentrations of any contaminant between murrelets from the two different overwinter areas, a result that indicates relatively rapid clearance of POPs accumulated during winter. Spatial variation in diet (i.e., δ13C) was associated with both BDE-47 and -99 concentrations. However, individual variation in trophic level had little influence on concentrations of any other examined contaminants. Thus, blood from these murrelets is a good indicator of recent, local contaminants, as most signals appear independent of overwintering location.


Subject(s)
Animal Distribution , Environmental Exposure , Environmental Pollutants , Animals , Birds , Breeding , British Columbia , Environmental Monitoring , Environmental Pollutants/blood , Environmental Pollutants/metabolism , Pacific Ocean , Seasons
6.
Ecology ; 89(4): 891-7, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18481511

ABSTRACT

Ecosystem change often affects the structure of aquatic communities thereby regulating how much and by what pathways energy and critical nutrients flow through food webs. The availability of energy and essential nutrients to top predators such as seabirds that rely on resources near the water's surface will be affected by changes in pelagic prey abundance. Here, we present results from analysis of a 25-year data set documenting dietary change in a predatory seabird from the Laurentian Great Lakes. We reveal significant declines in trophic position and alterations in energy and nutrient flow over time. Temporal changes in seabird diet tracked decreases in pelagic prey fish abundance. As pelagic prey abundance declined, birds consumed less aquatic prey and more terrestrial food. This pattern was consistent across all five large lake ecosystems. Declines in prey fish abundance may have primarily been the result of predation by stocked piscivorous fishes, but other lake-specific factors were likely also important. Natural resource management activities can have unintended consequences for nontarget ecosystem components. Reductions in pelagic prey abundance have reduced the capacity of the Great Lakes to support the energetic requirements of surface-feeding seabirds. In an environment characterized by increasingly limited pelagic fish resources, they are being offered a Hobsonian choice: switch to less nutritious terrestrial prey or go hungry.


Subject(s)
Charadriiformes/physiology , Diet , Fishes/physiology , Predatory Behavior/physiology , Animals , Food Chain , Great Lakes Region , Time Factors
7.
Sci Total Environ ; 502: 60-9, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25241209

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) increased in many matrices during the 1990s and early 2000s. Since voluntary restrictions and regulations on PBDEs were implemented in North America circa early 2000s, decreases in PBDEs have occurred in many of these same matrices. To examine temporal trends in the North Pacific, we retrospectively analysed PBDEs and eight non-PBDE flame retardants (FR) in eggs of two aquatic bird species, great blue herons, Ardea herodias, and double-crested cormorants, Phalacrocorax auritus, collected along the British Columbia coast, Canada from 1979 to 2012. Increasing PBDE concentrations were observed in both species followed by significant decreases post-2000 for all dominant congeners and ΣPBDE. Non-PBDE FRs were generally undetected in cormorant eggs, or detected at very low levels in heron eggs, except for hexabromocyclododecane (HBCDD). HBCDD, currently unregulated in North America, was not detected in early sampling years; however low concentrations were observed in both species in recent sampling years (2003-2012). Dietary tracers (δ(13)C and δ(15)N) did not change significantly over time, indicating that temporal changes in PBDEs are likely caused by implemented regulations. A comparison with recently published temporal trends of ΣPBDE in marine birds from North America and Europe is given.


Subject(s)
Birds/metabolism , Environmental Monitoring , Environmental Pollutants/metabolism , Flame Retardants/metabolism , Animals , Environmental Pollutants/analysis , Food Chain , Halogenated Diphenyl Ethers/metabolism , North America , Oceans and Seas
8.
Environ Pollut ; 195: 48-55, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25194271

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) are bioaccumulative flame retardants. PBDEs increased in many ecosystems during the late 20th century, but recently have declined in some environments. To examine trends in the northern Pacific, we analysed PBDEs, HBCDD and carbon and nitrogen stable isotopes (δ13C and δ15N) to account for dietary effects in archived eggs of three seabird species from British Columbia, Canada, 1990-2011 (rhinoceros auklets, Cerorhinca monocerata; Leach's storm-petrels, Oceanodroma leucorhoa; ancient murrelets, Synthliboramphus antiquus, 2009 only). PBDEs increased until approximately 2000 and then decreased, while HBCDD increased exponentially throughout the examined period. No significant changes in dietary tracers were observed. HBCDD and ΣPBDE levels varied among species; ΣPBDE also varied among sites. Temporal changes in contaminant concentrations are unlikely to have been caused by dietary changes, and likely reflect the build-up followed by decreases associated with voluntary phase-outs and regulations implemented in North America to control PBDEs.


Subject(s)
Birds/metabolism , Environmental Monitoring , Environmental Pollutants/metabolism , Flame Retardants/metabolism , Animals , British Columbia , Environmental Pollutants/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/metabolism , Hydrocarbons, Brominated/metabolism , Ovum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL