Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Am Chem Soc ; 140(11): 3940-3951, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29485277

ABSTRACT

Well-defined organoplatinum(IV) sites were grafted on a Zn(II)-modified SiO2 support via surface organometallic chemistry in toluene at room temperature. Solid-state spectroscopies including XAS, DRIFTS, DRUV-vis, and solid-state (SS) NMR enhanced by dynamic nuclear polarization (DNP), as well as TPR-H2 and TEM techniques revealed highly dispersed (methylcyclopentadienyl)methylplatinum(IV) sites on the surface ((MeCp)PtMe/Zn/SiO2, 1). In addition, computational modeling suggests that the surface reaction of (MeCp)PtMe3 with Zn(II)-modified SiO2 support is thermodynamically favorable (Δ G = -12.4 kcal/mol), likely due to the increased acidity of the hydroxyl group, as indicated by NH3-TPD and DNP-enhanced 17O{1H} SSNMR. In situ DRIFTS and XAS hydrogenation experiments reveal the probable formation of a surface Pt(IV)-H upon hydrogenolysis of Pt-Me groups. The heterogenized organoplatinum(IV)-hydride sites catalyze the selective partial hydrogenation of 1,3-butadiene to butenes (up to 95%) and the reduction of nitrobenzene derivatives to anilines (up to 99%) with excellent tolerance of reduction-sensitive functional groups (olefin, carbonyl, nitrile, halogens) under mild reaction conditions.

2.
Langmuir ; 34(35): 10333-10339, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30086633

ABSTRACT

We studied the diffusion of three model proteins, lysozyme (Lz), bovine hemoglobin (BHb), and bovine serum albumin (BSA), normal to the (111) plane of sintered silica colloidal crystals with three different pore "radii" (7.5, 19, and 27 nm). We demonstrated that these colloidal crystals exhibit size selectivity when the nanopores are sufficiently small (7.5 and 19 nm). Because these nanopores are still larger than the diffusing proteins, the observed size selectivity can be attributed to the tortuosity of the colloidal nanopores. Larger (27 nm) nanopores led to higher transport rates but at the cost of selectivity. In addition to the size selectivity, we also demonstrated that 19 nm nanopores possess shape selectivity for the proteins of comparable molecular weights. We showed that the high temperature sintering required for the preparation of sintered colloidal crystals reduces the extent of interactions between the proteins and the nanopore surface, which appear to play a minor role in the diffusion, and that transport selectivity is decided solely by protein size and shape. Taken together, our observations suggest that sintered silica colloidal crystals constitute promising nanoporous membranes for protein separations, with easily controllable pore size, size and shape selectivity, and minimal surface fouling.


Subject(s)
Colloids/chemistry , Diffusion , Hemoglobins/chemistry , Muramidase/chemistry , Serum Albumin, Bovine/chemistry , Silicon Dioxide/chemistry , Adsorption , Animals , Cattle , Chickens , Nanopores , Particle Size
3.
Langmuir ; 29(11): 3749-56, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23398311

ABSTRACT

We prepared colloidal crystals by self-assembly of gold-coated silica nanospheres, and free-standing nanoporous membranes by sintering these colloidal crystals. We modified the nanopore surface with ionizable functional groups, by forming a monolayer of L-cysteine or by surface-initiated polymerization of methacrylic acid. Diffusion experiments for the cationic dye Rhodamine B through L-cysteine-modified membranes showed a decrease in flux upon addition of an acid due to the nanopore surface becoming positively charged. Diffusion experiments for the neutral dye, ferrocenecarboxaldehyde, through the PMAA-modified membranes showed a 13-fold increase in flux upon addition of an acid resulting from the protonated polymer collapsing onto the nanopore surface leading to larger pore size. Our results demonstrate that SiO2@Au core-shell nanospheres can self-assemble into colloidal crystals and that transport through the corresponding surface-modified Au-coated colloidal membranes can be controlled by pH.


Subject(s)
Gold/chemistry , Membranes, Artificial , Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Acrylamides/chemistry , Acrylic Resins , Adsorption , Colloids , Cysteine/chemistry , Hydrogen-Ion Concentration , Polyethylene Glycols/chemistry , Polymers/chemistry , Surface Properties
4.
Chem Commun (Camb) ; 47(1): 553-5, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21103608

ABSTRACT

Diffusion rate of dye-labelled PAMAM dendrimers through free-standing silica colloidal crystals was studied as a function of the dendrimer generation and nanopore size to determine the transport selectivity.


Subject(s)
Dendrimers/chemistry , Nanoparticles/chemistry , Polyamines/chemistry , Silicon Dioxide/chemistry , Colloids/chemistry , Diffusion , Fluorescent Dyes/chemistry , Molecular Structure , Particle Size , Rhodamines/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL