Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mol Cell Probes ; 31: 28-36, 2017 02.
Article in English | MEDLINE | ID: mdl-27777104

ABSTRACT

Efforts to detect West Nile virus (WNV) in the Vojvodina province, northern Serbia, commenced with human and mosquito surveillance in 2005, followed by horse (2009) and wild bird (2012) surveillance. The knowledge obtained regarding WNV circulation, combined with the need for timely detection of virus activity and risk assessment resulted in the implementation of a national surveillance programme integrating mosquito, horse and bird surveillance in 2014. From 2013, the system showed highly satisfactory results in terms of area specificity (the capacity to indicate the spatial distribution of the risk for human cases of West Nile neuroinvasive disease - WNND) and sensitivity to detect virus circulation even at the enzootic level. A small number (n = 50) of Culex pipiens (pipiens and molestus biotypes, and their hybrids) females analysed per trap/night, combined with a high number of specimens in the sample, provided variable results in the early detection capacity at different administrative levels (NUTS2 versus NUTS3). The clustering of infected mosquitoes, horses, birds and human cases of WNND in 2014-2015 was highly significant, following the south-west to north-east direction in Vojvodina (NUTS2 administrative level). Human WNND cases grouped closest with infected mosquitoes in 2014, and with wild birds/mosquitoes in 2015. In 2014, sentinel horses showed better spatial correspondence with human WNND cases than sentinel chickens. Strong correlations were observed between the vector index values and the incidence of human WNND cases recorded at the NUTS2 and NUTS3 levels. From 2010, West Nile virus was detected in mosquitoes sampled at 43 different trap stations across Vojvodina. At 14 stations (32.56%), WNV was detected in two different (consecutive or alternate) years, at 2 stations in 3 different years, and in 1 station during 5 different years. Based on these results, integrated surveillance will be progressively improved to allow evidence-based adoption of preventive public health and mosquito control measures.


Subject(s)
Birds/virology , Culicidae/virology , Horses/virology , Population Surveillance , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile virus/physiology , Animals , Geography , Humans , Seasons , Serbia
2.
Animals (Basel) ; 14(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731259

ABSTRACT

Dirofilaria immitis and D. repens are the two most widespread and important species of mosquito-borne nematodes, posing a significant threat to veterinary health and particularly affecting canines and felines. While D. immitis causes cardiopulmonary dirofilariasis, D. repens causes subcutaneous infections in dogs and other carnivores. Despite the extensive knowledge on these parasites, little is known about their natural vectors in Serbia. The parasite Setaria tundra, known to infect deer, has not yet been detected in Serbia but has been documented in neighboring countries. Thus, the aim of this study was to (i) further map out Dirofilaria sp. hotspots in the Vojvodina Province and detect S. tundra for the first time, (ii) detect positive mosquito species that can provide insights into how the nematodes spread in Serbia, and (iii) analyze the blood-fed female mosquitoes of species found to be infected, in order to identify the potential source of parasite infection. A total of 2902 female mosquitoes were collected across 73 locations during 2021 and 2022. Molecular biology methods, based on conventional PCR, were used to analyze non-blood-fed (2521 specimens) and blood-fed (381 specimens) female mosquitos, in order to detect filarial nematode presence and identify blood-meal sources, respectively. When the parasite genome was detected, the amplicon (cox1 gene, 650 bp fragment) was sent for Sanger sequencing, further confirming the presence of nematodes and species assignation. D. immitis was detected in three Culex pipiens mosquitoes collected in Zrenjanin (August 2021) and Glogonj and Svetozar Miletic (both in July 2021). Additionally, Setaria tundra was detected in Aedes vexans collected in Idos (mid-August 2021) and Aedes caspius, which was collected in Mali Idos (end of July 2021). This work identifies two new locations where D. immitis occurs in Vojvodina, and is the first report of S. tundra in Serbian territory. Blood-meal analysis provided insights into the preferences of mosquitoes that were positive for Dirofilaria sp. and S. tundra.

3.
Insects ; 13(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35735841

ABSTRACT

Aedes (Stegomyia) albopictus (Skuse, 1895) is an invasive important medical and veterinary pest species. The sterile insect technique (SIT) involves the mass rearing of males, and their sterilization and release into the habitat to compete with wild males. Our research objective was to compare the effectiveness of three larval diet recipes (IAEA-BY, BCWPRL, and MIX-14) in the laboratory rearing of Ae. albopictus males to evaluate the available economical feeding alternatives. The separation of sexes was done in the pupal stage by sieving. Reared males were tested for flight capacity and longevity. The application of the BCWPRL diet resulted in a higher portion of sieved male pupae than females, but the development of males was the slowest, and the number of obtained males (pupae and adults) was lower compared to the other two diets. The adult mean survival time was the highest in males fed with MIX-14 and the lowest in males fed with IAEA-BY. Males fed by IAEA-BY also demonstrated higher initial mortality in the adult stage. The diets BCWPRL and MIX-14 are economically more convenient than IAEA-BY (2.28 and 5.30 times cheaper, respectively). The cheapest diet, MIX-14, might represent a candidate for replacing the effective but still expensive IAEA-BY larval diet, providing lower costs of sterile male production.

4.
Pathogens ; 10(10)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34684243

ABSTRACT

The results of the Serbian national integrated West Nile virus (WNV) surveillance program conducted in 2018 and funded by the Serbian Veterinary Directorate are presented. The WNV surveillance program encompassed the entire territory of Serbia and was conducted by the veterinary service in collaboration with entomologists and ornithologists. The objective of the program was early detection of WNV circulation in the environment and timely reporting to the public health service and local authorities to increase clinical and mosquito control preparedness. The program was based on the detection of WNV presence in wild birds (natural hosts) and mosquitoes (virus vectors) and on serological testing of sentinel horses (WNV-specific IgM antibodies). The season 2018 was confirmed to be the season of the most intensive WNV circulation with the highest number and severity of human cases in Serbia ever reported. The most intense WNV circulation was observed in the northern and central parts of Serbia including Vojvodina Province, the Belgrade City area, and surrounding districts, where most positive samples were detected among sentinel animals, mosquitoes and wild birds. The majority of human cases were preceded by the detection of WNV circulation during the surveillance. The WNV surveillance program in 2018 showed satisfactory results in the capacity to indicate the spatial distribution of the risk for humans and sensitivity to early detection of WNV circulation in the environment.

5.
PLoS One ; 15(1): e0227679, 2020.
Article in English | MEDLINE | ID: mdl-31940403

ABSTRACT

Motivated by the One Health paradigm, we found the expected changes in temperature and UV radiation (UVR) to be a common trigger for enhancing the risk that viruses, vectors, and diseases pose to human and animal health. We compared data from the mosquito field collections and medical studies with regional climate model projections to examine the impact of climate change on the spreading of one malaria vector, the circulation of West Nile virus (WNV), and the incidence of melanoma. We analysed data obtained from ten selected years of standardised mosquito vector sampling with 219 unique location-year combinations, and 10 years of melanoma incidence. Trends in the observed data were compared to the climatic variables obtained by the coupled regional Eta Belgrade University and Princeton Ocean Model for the period 1961-2015 using the A1B scenario, and the expected changes up to 2030 were presented. Spreading and relative abundance of Anopheles hyrcanus was positively correlated with the trend of the mean annual temperature. We anticipated a nearly twofold increase in the number of invaded sites up to 2030. The frequency of WNV detections in Culex pipiens was significantly correlated to overwintering temperature averages and seasonal relative humidity at the sampling sites. Regression model projects a twofold increase in the incidence of WNV positive Cx. pipiens for a rise of 0.5°C in overwintering TOctober-April temperatures. The projected increase of 56% in the number of days with Tmax ≥ 30°C (Hot Days-HD) and UVR doses (up to 1.2%) corresponds to an increasing trend in melanoma incidence. Simulations of the Pannonian countries climate anticipate warmer and drier conditions with possible dominance of temperature and number of HD over other ecological factors. These signal the importance of monitoring the changes to the preparedness of mitigating the risk of vector-borne diseases and melanoma.


Subject(s)
Climate Change , Malaria/epidemiology , Melanoma/epidemiology , West Nile Fever/epidemiology , Animals , Anopheles/metabolism , Anopheles/pathogenicity , Culex/virology , Humans , Incidence , Insect Vectors/virology , Mosquito Vectors/virology , Seasons , Serbia/epidemiology , Temperature , West Nile virus , Yugoslavia/epidemiology
6.
Parasit Vectors ; 11(1): 463, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30103795

ABSTRACT

BACKGROUND: Blackflies have negative impact on public and animal health due to the haematophagous habit of females. In recent times, in some regions in Spain, blackfly outbreaks are becoming more and more frequent, threatening the public health. However, there is still a paucity of data concerning the Spanish blackfly fauna. Correct identification of species is of paramount importance in order to provide correct information on species distribution, biology and behaviour, so that control measures could be implemented appropriately. METHODS: Blackflies specimens (larvae, pupae, reared adults and biting females) were collected in the period 2015-2017 in and near rivers and streams from different regions in Spain. A modified Hotshot technique was used for the DNA extraction and the cox1 DNA barcoding region of the cytochrome c oxidase subunit 1 was sequenced from the specimens collected. RESULTS: In total, we collected 239 specimens representing 22 species. Of these, six species are new records for the Aragón region: P. tomosvaryi, S. bertrandi, S. galloprovinciale, S. lineatum, S. rubzovianum and S. xanthinum. Cox1 DNA barcode sequences for 21 species were recovered, including four species of the genus Prosimulium and 17 species of the genus Simulium [Boophthora (1 species), Eusimulium (1 species), Nevermannia (4 species), Simulium (s.s.) (6 species), Trichodagmia (1 species) and Wilhelmia (4 species)]. For the first time the complete DNA barcodes for five species (P. tomosvaryi, S. carthusiense, S. brevidens, S. monticola and S. sergenti) were registered. Most of the specimens belonging to the same recognized species were clustered together in the neighbour-joining tree, except for S. argyreatum, S. monticola and S. variegatum. The overall genetic distance in the dataset was 0.14%. The average of the intraspecific genetic divergence within the different taxa was 1.47% (0.05-3.96%). In contrast, the interspecific divergence varied between 2.50-22.0%. CONCLUSIONS: In this study we assessed the use of the cox1 DNA barcoding region for the identification of species of blackflies in Spain. Our results showed that combining DNA barcoding with morphology enhanced our taxonomic rationale in identifying the blackflies in the country.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV/genetics , Simuliidae/genetics , Animal Distribution , Animals , Biodiversity , Genetic Variation , Insect Proteins/genetics , Phylogeny , Spain , Species Specificity
7.
PLoS One ; 13(4): e0195439, 2018.
Article in English | MEDLINE | ID: mdl-29624622

ABSTRACT

Studies conducted during the past few years have confirmed active West Nile virus (WNV) circulation in Serbia. Based on these studies and the epidemiological situation, the Veterinary Directorate of the Ministry of Agriculture and Environmental Protection launched national WNV surveillance programmes in 2014 and 2015. The programmes encompassed the territory of Serbia and were conducted by the veterinary service in collaboration with entomologists and ornithologists. The objective of the programmes was early detection of WNV and timely reporting to the public health service and local authorities to increase both clinical and mosquito control preparedness. The WNV surveillance programmes were based on direct and indirect surveillance of the presence of WNV by the serological testing of initially seronegative sentinel horses and chickens as well as through viral detection in pooled mosquito and wild bird samples. The most intense WNV circulation was observed in all seven districts of Vojvodina Province (northern Serbia) and Belgrade City, where most of the positive samples were detected among sentinel animals, mosquitoes and wild birds. The West Nile virus surveillance programmes in 2014 and 2015 showed satisfactory results in their capacity to indicate the spatial distribution of the risk for humans and their sensitivity to early detect viral circulation at the enzootic level. Most of the human cases were preceded by the detection of WNV circulation as part of the surveillance programmes. According to the existing data, it can be reasonably assumed that WNV infection, now an endemic infection in Serbia, will continue to present a significant problem for the veterinary service and public health.


Subject(s)
Sentinel Surveillance/veterinary , West Nile Fever/veterinary , West Nile virus/isolation & purification , Animals , Animals, Wild/virology , Antibodies, Viral/blood , Birds/virology , Chickens/virology , Culicidae/virology , Endemic Diseases/veterinary , Horses/virology , Humans , Mosquito Vectors/virology , Serbia/epidemiology , Seroepidemiologic Studies , West Nile Fever/epidemiology , West Nile Fever/transmission , West Nile virus/genetics , West Nile virus/immunology
8.
PLoS One ; 11(1): e0147673, 2016.
Article in English | MEDLINE | ID: mdl-26808274

ABSTRACT

The European black fly Simulium (Simulium) colombaschense (Scopoli), once responsible for as many as 22,000 livestock deaths per year, is chromosomally mapped, permitting its evolutionary relationships and pest drivers to be inferred. The species is 12 fixed inversions removed from the standard sequence of the subgenus Simulium. Three of these fixed inversions, 38 autosomal polymorphisms, and a complex set of 12 X and 6 Y chromosomes in 29 zygotic combinations uniquely characterize S. colombaschense and reveal 5 cytoforms: 'A' in the Danube watershed, 'B' in Italy's Adige River, 'C' in the Aliakmonas River of Greece, 'D' in the Aoös drainage in Greece, and 'E' in the Belá River of Slovakia. 'C' and 'D' are reproductively isolated from one another, and 'B' is considered a cytotype of 'A,' the probable name bearer of colombaschense. The species status of 'E' cannot be determined without additional collections. Three derived polytene sequences, based on outgroup comparisons, place S. colombaschense in a clade of species composed of the S. jenningsi, S. malyschevi, and S. reptans species groups. Only cytoforms 'A' and 'B' are pests. Within the Simuliidae, pest status is reached through one of two principal pathways, both of which promote the production of large populations of blood-seeking flies: (1) colonization of the world's largest rivers (habitat specialization) or (2) colonization of multiple habitat types (habitat generalization). Evolutionary acquisition of the ability to colonize large rivers by an ancestor of the S. jenningsi-malyschevi-reptans clade set the scene for the pest status of S. colombaschense and other big-river members of the clade. In an ironic twist, the macrogenome of S. colombaschense reveals that the name associated with history's worst simuliid pest represents a complex of species, two or more of which are nonpests potentially vulnerable to loss of their limited habitat.


Subject(s)
Biodiversity , Diptera/genetics , Genome , Animals , Chromosome Mapping , Female , Male
9.
Ann Agric Environ Med ; 22(2): 243-6, 2015.
Article in English | MEDLINE | ID: mdl-26094516

ABSTRACT

INTRODUCTION: Flies - by feeding on decaying matter, human waste and food - have been implicated in the spread of numerous animal and human diseases. Excessive fly populations are generally associated with livestock units and domestic waste due to decaying organic matter. A large number of flies cause extreme disturbance in the behavior of the host, resulting in skin irritation, lesions, wounds, and secondary infections are likely to appear. OBJECTIVE: The aim of this study was to evaluate the effects of combined applications of larvicide (cyromazine) and adulticides (acetamiprid in formulation with pheromone and thiamethoxam) on the suppression of fly populations. MATERIALS AND METHODS: The study was conducted on a pig farm. The piglet farms are one of the most favorable places for fly breeding. Three units were used for biocide applications and a fourth unit as the control where biocides were not applied. The monitoring of pre- and post-treatment of adult fly populations was carried out by glued cardboards. The cards were hung on metal rods above piglet's cage. This monitoring method served as a parameter for the estimation of biological effectiveness. RESULTS: The highest degree of fly control (88.4% mortality 8 days after treatment) was achieved when a combination of cyromazine and thiamethoxam was used. A biocide based on sex pheromone (Z)-9-tricosene + acetamiprid was the most effective on flies 3 days after biocide application, with a mortality rate of 69.1 %. Thiamethoxam achieved the highest reduction of flies 6 days after treatment, with 78.19% obtained mortality. CONCLUSION: Biological efficacy of the applied biocides in combination ciromazine + thiamethoxam and thiamethoxam alone was justified.


Subject(s)
Insecticides , Muscidae , Pheromones , Animal Husbandry , Animals , Larva/growth & development , Neonicotinoids , Nitro Compounds , Oxazines , Population Density , Pyridines , Serbia , Swine , Thiamethoxam , Thiazoles , Triazines
10.
PLoS Negl Trop Dis ; 7(12): e2585, 2013.
Article in English | MEDLINE | ID: mdl-24349594

ABSTRACT

BACKGROUND: Among the arthropod-borne nematodes infesting dogs, Onchocerca lupi (Spirurida: Onchocercidae) is of increasing zoonotic concern, with new human cases of infection diagnosed in Turkey, Tunisia, Iran and the USA. Knowledge of the biology of this nematode is meagre. This study aimed at assessing the distribution and periodicity of O. lupi microfilariae from different body regions in naturally infested dogs. METHODOLOGY/PRINCIPAL FINDINGS: Skin samples were collected from six dogs infested with O. lupi but without apparent clinical signs. Two skin samples were collected from 18 anatomical regions of dog 1 at necropsy. In addition, single skin biopsies were performed from the forehead, inter-scapular and lumbar regions of dogs 2-6, in the morning, afternoon, and at night. Two aliquots of the sediment of each sample were microscopically observed, microfilariae counted and morphologically and molecularly identified. Most of the 1,667 microfilariae retrieved from dog 1 were in the right ear (59.6%), nose (26.5%), left ear (6.7%), forehead (3.0%), and inter-scapular (2.9%) regions. In dogs 2-6, the overall mean number of microfilariae was larger on the head (n = 122.8), followed by the inter-scapular (n = 119.0) and lumbar (n = 12.8) regions. The overall mean number of microfilariae was larger in the afternoon (153.4), followed by night (75.4) and morning (25.8). CONCLUSIONS: Onchocerca lupi microfilariae were more common in the head (i.e., ears and nose) than in the remaining part of the dog's body, indicating they tend to aggregate in specific body regions, which are the best sites to collect skin samples for diagnostic purposes. The periodicity pattern of microfilariae of O. lupi and their concentration in specific body regions is most likely a result of the co-evolution with their as-yet-unknown vector. The detection of skin microfilariae in asymptomatic animals, suggests the potential role of these animals as carriers and reservoirs of O. lupi.


Subject(s)
Dog Diseases/parasitology , Onchocerca/physiology , Onchocerciasis/veterinary , Skin Diseases, Parasitic/veterinary , Skin/parasitology , Animals , Biopsy , Circadian Rhythm , Dogs , Female , Male , Microscopy , Onchocerciasis/parasitology , Skin Diseases, Parasitic/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL