Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Methods ; 19(5): 620-627, 2022 05.
Article in English | MEDLINE | ID: mdl-35545713

ABSTRACT

Animal behavior emerges from an interaction between neural network dynamics, musculoskeletal properties and the physical environment. Accessing and understanding the interplay between these elements requires the development of integrative and morphologically realistic neuromechanical simulations. Here we present NeuroMechFly, a data-driven model of the widely studied organism, Drosophila melanogaster. NeuroMechFly combines four independent computational modules: a physics-based simulation environment, a biomechanical exoskeleton, muscle models and neural network controllers. To enable use cases, we first define the minimum degrees of freedom of the leg from real three-dimensional kinematic measurements during walking and grooming. Then, we show how, by replaying these behaviors in the simulator, one can predict otherwise unmeasured torques and contact forces. Finally, we leverage NeuroMechFly's full neuromechanical capacity to discover neural networks and muscle parameters that drive locomotor gaits optimized for speed and stability. Thus, NeuroMechFly can increase our understanding of how behaviors emerge from interactions between complex neuromechanical systems and their physical surroundings.


Subject(s)
Drosophila melanogaster , Gait , Animals , Biomechanical Phenomena , Computer Simulation , Gait/physiology , Models, Biological , Walking/physiology
2.
Neural Comput ; 25(2): 328-73, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23148415

ABSTRACT

Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by means of a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.


Subject(s)
Models, Theoretical , Movement , Robotics , Animals , Artificial Intelligence , Humans , Nonlinear Dynamics
3.
Biol Cybern ; 107(5): 565-87, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23463500

ABSTRACT

The evolutionary transition from water to land required new locomotor modes and corresponding adjustments of the spinal "central pattern generators" for locomotion. Salamanders resemble the first terrestrial tetrapods and represent a key animal for the study of these changes. Based on recent physiological data from salamanders, and previous work on the swimming, limbless lamprey, we present a model of the basic oscillatory network in the salamander spinal cord, the spinal segment. Model neurons are of the Hodgkin-Huxley type. Spinal hemisegments contain sparsely connected excitatory and inhibitory neuron populations, and are coupled to a contralateral hemisegment. The model yields a large range of experimental findings, especially the NMDA-induced oscillations observed in isolated axial hemisegments and segments of the salamander Pleurodeles waltlii. The model reproduces most of the effects of the blockade of AMPA synapses, glycinergic synapses, calcium-activated potassium current, persistent sodium current, and [Formula: see text]-current. Driving segments with a population of brainstem neurons yields fast oscillations in the in vivo swimming frequency range. A minimal modification to the conductances involved in burst-termination yields the slower stepping frequency range. Slow oscillators can impose their frequency on fast oscillators, as is likely the case during gait transitions from swimming to stepping. Our study shows that a lamprey-like network can potentially serve as a building block of axial and limb oscillators for swimming and stepping in salamanders.


Subject(s)
Lampreys/physiology , Models, Neurological , Urodela/physiology , Animals , Biological Evolution , Cybernetics , Electrophysiological Phenomena , Ion Channels/physiology , Locomotion/physiology , N-Methylaspartate/physiology , Nerve Net/physiology , Spinal Cord/physiology , Synaptic Transmission
4.
Biol Cybern ; 107(5): 529-44, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23250621

ABSTRACT

Salamanders have captured the interest of biologists and roboticists for decades because of their ability to locomote in different environments and their resemblance to early representatives of tetrapods. In this article, we review biological and robotic studies on the kinematics (i.e., angular profiles of joints) of salamander locomotion aiming at three main goals: (i) to give a clear view of the kinematics, currently available, for each body part of the salamander while moving in different environments (i.e., terrestrial stepping, aquatic stepping, and swimming), (ii) to examine what is the status of our current knowledge and what remains unclear, and (iii) to discuss how much robotics and modeling have already contributed and will potentially contribute in the future to such studies.


Subject(s)
Locomotion/physiology , Robotics , Urodela/physiology , Animals , Biomechanical Phenomena , Cybernetics , Extremities/physiology , Models, Biological , Swimming/physiology , Urodela/anatomy & histology
5.
Biol Cybern ; 107(5): 545-64, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23430277

ABSTRACT

Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive.


Subject(s)
Locomotion/physiology , Models, Biological , Robotics , Urodela/physiology , Animals , Cybernetics , Extremities/physiology , Feedback, Sensory/physiology , Nerve Net/physiology , Swimming/physiology
6.
Sci Robot ; 8(78): eadg0279, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37256966

ABSTRACT

Robotics and neuroscience are sister disciplines that both aim to understand how agile, efficient, and robust locomotion can be achieved in autonomous agents. Robotics has already benefitted from neuromechanical principles discovered by investigating animals. These include the use of high-level commands to control low-level central pattern generator-like controllers, which, in turn, are informed by sensory feedback. Reciprocally, neuroscience has benefited from tools and intuitions in robotics to reveal how embodiment, physical interactions with the environment, and sensory feedback help sculpt animal behavior. We illustrate and discuss exemplar studies of this dialog between robotics and neuroscience. We also reveal how the increasing biorealism of simulations and robots is driving these two disciplines together, forging an integrative science of autonomous behavioral control with many exciting future opportunities.


Subject(s)
Neurosciences , Robotics , Animals , Locomotion , Feedback, Sensory , Biology
7.
IEEE Trans Cybern ; 52(8): 7981-7994, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33635813

ABSTRACT

This article examines the importance of integrating locomotion and cognitive information for achieving dynamic locomotion from a viewpoint combining biology and ecological psychology. We present a mammalian neuromusculoskeletal model from external sensory information processing to muscle activation, which includes: 1) a visual-attention control mechanism for controlling attention to external inputs; 2) object recognition representing the primary motor cortex; 3) a motor control model that determines motor commands traveling down the corticospinal and reticulospinal tracts; 4) a central pattern generation model representing pattern generation in the spinal cord; and 5) a muscle reflex model representing the muscle model and its reflex mechanism. The proposed model is able to generate the locomotion of a quadruped robot in flat and natural terrain. The experiment also shows the importance of a postural reflex mechanism when experiencing a sudden obstacle. We show the reflex mechanism when a sudden obstacle is separately detected from both external (retina) and internal (touching afferent) sensory information. We present the biological rationale for supporting the proposed model. Finally, we discuss future contributions, trends, and the importance of the proposed research.


Subject(s)
Robotics , Animals , Locomotion/physiology , Mammals , Reflex/physiology , Spinal Cord/physiology
8.
Sensors (Basel) ; 11(1): 207-27, 2011.
Article in English | MEDLINE | ID: mdl-22346574

ABSTRACT

A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer's skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented.


Subject(s)
Lower Extremity/physiology , Man-Machine Systems , Pressure , Humans , Robotics , Silicones/chemistry , User-Computer Interface
9.
Front Robot AI ; 8: 562524, 2021.
Article in English | MEDLINE | ID: mdl-33912592

ABSTRACT

There are currently many quadruped robots suited to a wide range of applications, but traversing some terrains, such as vertical ladders, remains an open challenge. There is still a need to develop adaptive robots that can walk and climb efficiently. This paper presents an adaptive quadruped robot that, by mimicking feline structure, supports several novel capabilities. We design a novel paw structure and several point-cloud-based sensory structures incorporating a quad-composite time-of-flight sensor and a dual-laser range finder. The proposed robot is equipped with physical and cognitive capabilities which include: 1) a dynamic-density topological map building with attention model, 2) affordance perception using the topological map, and 3) a neural-based locomotion model. The novel capabilities show strong integration between locomotion and internal-external sensory information, enabling short-term adaptations in response to environmental changes. The robot performed well in several situations: walking on natural terrain, walking with a leg malfunction, avoiding a sudden obstacle, climbing a vertical ladder. Further, we consider current problems and future development.

10.
IEEE Access ; 9: 163861-163881, 2021.
Article in English | MEDLINE | ID: mdl-35211364

ABSTRACT

Neural control of movement cannot be fully understood without careful consideration of interactions between the neural and biomechanical components. Recent advancements in mouse molecular genetics allow for the identification and manipulation of constituent elements underlying the neural control of movement. To complement experimental studies and investigate the mechanisms by which the neural circuitry interacts with the body and the environment, computational studies modeling motor behaviors in mice need to incorporate a model of the mouse musculoskeletal system. Here, we present the first fully articulated musculoskeletal model of the mouse. The mouse skeletal system has been developed from anatomical references and includes the sets of bones in all body compartments, including four limbs, spine, head and tail. Joints between all bones allow for simulation of full 3D mouse kinematics and kinetics. Hindlimb and forelimb musculature has been implemented using Hill-type muscle models. We analyzed the mouse whole-body model and described the moment-arms for different hindlimb and forelimb muscles, the moments applied by these muscles on the joints, and their involvement in limb movements at different limb/body configurations. The model represents a necessary step for the subsequent development of a comprehensive neuro-biomechanical model of freely behaving mice; this will close the loop between the neural control and the physical interactions between the body and the environment.

11.
Trends Neurosci ; 43(11): 916-930, 2020 11.
Article in English | MEDLINE | ID: mdl-33010947

ABSTRACT

How do four-legged animals adapt their locomotion to the environment? How do central and peripheral mechanisms interact within the spinal cord to produce adaptive locomotion and how is locomotion recovered when spinal circuits are perturbed? Salamanders are the only tetrapods that regenerate voluntary locomotion after full spinal transection. Given their evolutionary position, they provide a unique opportunity to bridge discoveries made in fish and mammalian models. Genetic dissection of salamander neural circuits is becoming feasible with new methods for precise manipulation, elimination, and visualisation of cells. These approaches can be combined with classical tools in neuroscience and with modelling and a robotic environment. We propose that salamanders provide a blueprint of the function, evolution, and regeneration of tetrapod locomotor circuits.


Subject(s)
Spinal Cord Injuries , Urodela , Animals , Locomotion , Spinal Cord , Walking
12.
Biol Cybern ; 101(5-6): 361-77, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19862548

ABSTRACT

In this study, based on behavioral and neurophysiological facts, a new hierarchical multi-agent architecture is proposed to model the human motor control system. Performance of the proposed structure is investigated by simulating the control of sit to stand movement. To develop the model, concepts of mixture of experts, modular structure, and some aspects of equilibrium point hypothesis were brought together. We have called this architecture MODularized Experts Model (MODEM). Human motor system is modeled at the joint torque level and the role of the muscles has been embedded in the function of the joint compliance characteristics. The input to the motor system, i.e., the central command, is the reciprocal command. At the lower level, there are several experts to generate the central command to control the task according to the details of the movement. The number of experts depends on the task to be performed. At the higher level, a "gate selector" block selects the suitable subordinate expert considering the context of the task. Each expert consists of a main controller and a predictor as well as several auxiliary modules. The main controller of an expert learns to control the performance of a given task by generating appropriate central commands under given conditions and/or constraints. The auxiliary modules of this expert learn to scrutinize the generated central command by the main controller. Auxiliary modules increase their intervention to correct the central command if the movement error is increased due to an external disturbance. Each auxiliary module acts autonomously and can be interpreted as an agent. Each agent is responsible for one joint and, therefore, the number of the agents of each expert is equal to the number of joints. Our results indicate that this architecture is robust against external disturbances, signal-dependent noise in sensory information, and changes in the environment. We also discuss the neurophysiological and behavioral basis of the proposed model (MODEM).


Subject(s)
Models, Neurological , Movement/physiology , Muscle, Skeletal/physiology , Central Nervous System/physiology , Computer Simulation , Humans , Joints/physiology , Learning/physiology , Muscle Contraction/physiology , Nerve Net/anatomy & histology , Nerve Net/physiology , Reproducibility of Results , Torque
14.
Neural Netw ; 21(4): 642-53, 2008 May.
Article in English | MEDLINE | ID: mdl-18555958

ABSTRACT

The problem of controlling locomotion is an area in which neuroscience and robotics can fruitfully interact. In this article, I will review research carried out on locomotor central pattern generators (CPGs), i.e. neural circuits capable of producing coordinated patterns of high-dimensional rhythmic output signals while receiving only simple, low-dimensional, input signals. The review will first cover neurobiological observations concerning locomotor CPGs and their numerical modelling, with a special focus on vertebrates. It will then cover how CPG models implemented as neural networks or systems of coupled oscillators can be used in robotics for controlling the locomotion of articulated robots. The review also presents how robots can be used as scientific tools to obtain a better understanding of the functioning of biological CPGs. Finally, various methods for designing CPGs to control specific modes of locomotion will be briefly reviewed. In this process, I will discuss different types of CPG models, the pros and cons of using CPGs with robots, and the pros and cons of using robots as scientific tools. Open research topics both in biology and in robotics will also be discussed.


Subject(s)
Biological Clocks/physiology , Central Nervous System/physiology , Locomotion/physiology , Neurosciences/methods , Robotics/methods , Animals , Humans , Movement/physiology , Nerve Net/physiology , Neural Networks, Computer , Neural Pathways/physiology , Neurosciences/trends , Robotics/trends
15.
Front Robot AI ; 5: 67, 2018.
Article in English | MEDLINE | ID: mdl-33500946

ABSTRACT

We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 kg robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajallooeian, 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. The robot's locomotion capabilities are shown in several scenarios. Specifically, its spring-loaded pantographic leg design compensates for overdetermined body and leg postures, i.e., during turning maneuvers, locomotion outdoors, or while going up and down slopes. The robot's active degree of freedom allow tight and swift direction changes, and turns on the spot. Presented hardware experiments are conducted in an open-loop manner, with little control and computational effort. For more versatile locomotion control, Oncilla-robot can sense leg joint rotations, and leg-trunk forces. Additional sensors can be included for feedback control with an open communication protocol interface. The robot's customized actuators are designed for robust actuation, and efficient locomotion. It trots with a cost of transport of 3.2 J/(Nm), at a speed of 0.63 m s-1 (Froude number 0.25). The robot trots inclined slopes up to 10°, at 0.25 m s-1. The multi-body Webots model of Oncilla robot, and Oncilla robot's extensive software architecture enables users to design and test scenarios in simulation. Controllers can directly be transferred to the real robot. Oncilla robot's blueprints are open-source published (hardware GLP v3, software LGPL v3).

16.
Nat Commun ; 8: 14494, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28211509

ABSTRACT

To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact.


Subject(s)
Drosophila melanogaster/physiology , Gait/physiology , Locomotion/physiology , Adhesiveness , Animals , Extremities/physiology , Models, Animal , Robotics
17.
PLoS One ; 12(9): e0179989, 2017.
Article in English | MEDLINE | ID: mdl-28877161

ABSTRACT

In spite of extensive studies on human walking, less research has been conducted on human walking gait adaptation during interaction with another human. In this paper, we study a particular case of interactive locomotion where two humans carry a rigid object together. Experimental data from two persons walking together, one in front of the other, while carrying a stretcher-like object is presented, and the adaptation of their walking gaits and coordination of the foot-fall patterns are analyzed. It is observed that in more than 70% of the experiments the subjects synchronize their walking gaits; it is shown that these walking gaits can be associated to quadrupedal gaits. Moreover, in order to understand the extent by which the passive dynamics can explain this synchronization behaviour, a simple 2D model, made of two-coupled spring-loaded inverted pendulums, is developed, and a comparison between the experiments and simulations with this model is presented, showing that with this simple model we are able to reproduce some aspects of human walking behaviour when paired with another human.


Subject(s)
Locomotion/physiology , Models, Biological , Walking/physiology , Adult , Algorithms , Biomechanical Phenomena , Computer Simulation , Female , Gait/physiology , Humans , Male
18.
Logoped Phoniatr Vocol ; 31(1): 36-42, 2006.
Article in English | MEDLINE | ID: mdl-16517521

ABSTRACT

This paper reports a study on short-time subharmonic pitch breaks in vocal fold vibration, which are found to be a common feature of the human voice in spoken language. The observed pitch breaks correspond to a change in periodicity of the electrolaryngograph (Lx) signal. This paper presents a nonlinear dynamical system capable of producing time-series with subharmonic pitch breaks. The resulting time-series resemble closely Lx recordings of natural speech. The system is developed on the basis of a second order linear system, which is extended with a third dimension and nonlinear coupling terms. It is suggested that improved knowledge about pitch breaks could be used in future speech synthesis systems in order to improve the naturalness of the perceived output.


Subject(s)
Nonlinear Dynamics , Phonation/physiology , Vibration , Vocal Cords/physiology , Voice/physiology , Female , Humans , Male , Mathematical Computing , Periodicity , Pitch Perception , Time Factors , Voice Quality
19.
Neuroinformatics ; 3(3): 171-95, 2005.
Article in English | MEDLINE | ID: mdl-16077158

ABSTRACT

This article presents a project that aims at understanding the neural circuitry controlling salamander locomotion, and developing an amphibious salamander-like robot capable of replicating its bimodal locomotion, namely swimming and terrestrial walking. The controllers of the robot are central pattern generator models inspired by the salamander's locomotion control network. The goal of the project is twofold: (1) to use robots as tools for gaining a better understanding of locomotion control in vertebrates and (2) to develop new robot and control technologies for developing agile and adaptive outdoor robots. The article has four parts. We first describe the motivations behind the project. We then present neuromechanical simulation studies of locomotion control in salamanders. This is followed by a description of the current stage of the robotic developments. We conclude the article with a discussion on the usefulness of robots in neuroscience research with a special focus on locomotion control.


Subject(s)
Computer Simulation , Locomotion/physiology , Nerve Net/physiology , Robotics , Urodela/physiology , Animals , Biomechanical Phenomena , Cybernetics , Electromyography/methods , Gait/physiology , Neural Networks, Computer , Neurobiology/methods , Physical Stimulation , Stimulation, Chemical , Time Factors
20.
Front Neurol ; 6: 17, 2015.
Article in English | MEDLINE | ID: mdl-25709597

ABSTRACT

Crawling on hands and knees is an early pattern of human infant locomotion, which offers an interesting way of studying quadrupedalism in one of its simplest form. We investigate how crawling human infants compare to other quadruped mammals, especially primates. We present quantitative data on both the gait and kinematics of seven 10-month-old crawling infants. Body movements were measured with an optoelectronic system giving precise data on 3-dimensional limb movements. Crawling on hands and knees is very similar to the locomotion of non-human primates in terms of the quite protracted arm at touch-down, the coordination between the spine movements in the lateral plane and the limbs, the relatively extended limbs during locomotion and the strong correlation between stance duration and speed of locomotion. However, there are important differences compared to primates, such as the choice of a lateral-sequence walking gait, which is similar to most non-primate mammals and the relatively stiff elbows during stance as opposed to the quite compliant gaits of primates. These finding raise the question of the role of both the mechanical structure of the body and neural control on the determination of these characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL