Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Mol Sci ; 23(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35683015

ABSTRACT

In amyloid light-chain (AL) amyloidosis, small B-cell clones (mostly plasma cell clones) present in the bone marrow proliferate and secrete unstable monoclonal free light chains (FLCs), which form amyloid fibrils that deposit in the interstitial tissue, resulting in organ injury and dysfunction. AL amyloidosis progresses much faster than other types of amyloidosis, with a slight delay in diagnosis leading to a marked exacerbation of cardiomyopathy. In some cases, the resulting heart failure is so severe that chemotherapy cannot be administered, and death sometimes occurs within a few months. To date, many clinical studies have focused on therapeutics, especially chemotherapy, to treat this disease. Because it is necessary to promptly lower FLC, the causative protein of amyloid, to achieve a hematological response, various anticancer agents targeting neoplastic plasma cells are used for the treatment of this disease. In addition, many basic studies using human specimens to elucidate the pathophysiology of AL have been conducted. Gene mutations associated with AL, the characteristics of amyloidogenic LC, and the structural specificity of amyloid fibrils have been clarified. Regarding the mechanism of cellular and tissue damage, the mass effect due to amyloid deposition, as well as the toxicity of pre-fibrillar LC, is gradually being elucidated. This review outlines the pathogenesis and treatment strategies for AL amyloidosis with respect to its molecular mechanisms.


Subject(s)
Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Amyloid/genetics , Amyloid/metabolism , Amyloidogenic Proteins , Amyloidosis/etiology , Amyloidosis/genetics , Humans , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light-chain Amyloidosis/diagnosis , Immunoglobulin Light-chain Amyloidosis/genetics , Immunoglobulin Light-chain Amyloidosis/therapy
2.
Int J Mol Sci ; 23(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35163335

ABSTRACT

Doxorubicin (DOX) is the most widely used anthracycline anticancer agent; however, its cardiotoxicity limits its clinical efficacy. Numerous studies have elucidated the mechanisms underlying DOX-induced cardiotoxicity, wherein apoptosis has been reported as the most common final step leading to cardiomyocyte death. However, in the past two years, the involvement of ferroptosis, a novel programmed cell death, has been proposed. The purpose of this review is to summarize the historical background that led to each form of cell death, focusing on DOX-induced cardiotoxicity and the molecular mechanisms that trigger each form of cell death. Furthermore, based on this understanding, possible therapeutic strategies to prevent DOX cardiotoxicity are outlined. DNA damage, oxidative stress, intracellular signaling, transcription factors, epigenetic regulators, autophagy, and metabolic inflammation are important factors in the molecular mechanisms of DOX-induced cardiomyocyte apoptosis. Conversely, the accumulation of lipid peroxides, iron ion accumulation, and decreased expression of glutathione and glutathione peroxidase 4 are important in ferroptosis. In both cascades, the mitochondria are an important site of DOX cardiotoxicity. The last part of this review focuses on the significance of the disruption of mitochondrial homeostasis in DOX cardiotoxicity.


Subject(s)
Cardiomyopathies , Ferroptosis , Apoptosis , Cardiomyopathies/metabolism , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Humans , Myocytes, Cardiac/metabolism , Oxidative Stress
3.
J Mol Cell Cardiol ; 161: 116-129, 2021 12.
Article in English | MEDLINE | ID: mdl-34390730

ABSTRACT

MITOL/MARCH5 is an E3 ubiquitin ligase that plays a crucial role in the control of mitochondrial quality and function. However, the significance of MITOL in cardiomyocytes under physiological and pathological conditions remains unclear. First, to determine the significance of MITOL in unstressed hearts, we assessed the cellular changes with the reduction of MITOL expression by siRNA in neonatal rat primary ventricular cardiomyocytes (NRVMs). MITOL knockdown in NRVMs induced cell death via ferroptosis, a newly defined non-apoptotic programmed cell death, even under no stress conditions. This phenomenon was observed only in NRVMs, not in other cell types. MITOL knockdown markedly reduced mitochondria-localized GPX4, a key enzyme associated with ferroptosis, promoting accumulation of lipid peroxides in mitochondria. In contrast, the activation of GPX4 in MITOL knockdown cells suppressed lipid peroxidation and cell death. MITOL knockdown reduced the glutathione/oxidized glutathione (GSH/GSSG) ratio that regulated GPX4 expression. Indeed, the administration of GSH or N-acetylcysteine improved the expression of GPX4 and viability in MITOL-knockdown NRVMs. MITOL-knockdown increased the expression of the glutathione-degrading enzyme, ChaC glutathione-specific γ-glutamylcyclotransferase 1 (Chac1). The knockdown of Chac1 restored the GSH/GSSG ratio, GPX4 expression, and viability in MITOL-knockdown NRVMs. Further, in cultured cardiomyocytes stressed with DOX, both MITOL and GPX4 were reduced, whereas forced-expression of MITOL suppressed DOX-induced ferroptosis by maintaining GPX4 content. Additionally, MITOL knockdown worsened vulnerability to DOX, which was almost completely rescued by treatment with ferrostatin-1, a ferroptosis inhibitor. In vivo, cardiac-specific depletion of MITOL did not produce obvious abnormality, but enhanced susceptibility to DOX toxicity. Finally, administration of ferrostatin-1 suppressed exacerbation of DOX-induced myocardial damage in MITOL-knockout hearts. The present study demonstrates that MITOL determines the cell fate of cardiomyocytes via the ferroptosis process and plays a key role in regulating vulnerability to DOX treatment. (288/300).


Subject(s)
Cardiomyopathies/chemically induced , Doxorubicin/pharmacology , Glutathione/metabolism , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/drug effects , Ubiquitin-Protein Ligases/metabolism , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Death/drug effects , Cells, Cultured , Doxorubicin/adverse effects , Ferroptosis/drug effects , HEK293 Cells , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Proteins/genetics , Myocytes, Cardiac/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Rats , Ubiquitin-Protein Ligases/genetics , gamma-Glutamylcyclotransferase/genetics , gamma-Glutamylcyclotransferase/metabolism
5.
J Clin Med ; 12(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37629266

ABSTRACT

Exercise therapy at the aerobic level is highly recommended to improve clinical outcomes in patients with heart failure, in which cardiopulmonary exercise testing (CPX) is required to determine anaerobic thresholds (ATs) but is not available everywhere. This study aimed to validate a method to estimate the AT using heart rate variability (HRV) analysis from electrocardiography data in patients with heart failure. Between 2014 and 2019, 67 patients with symptomatic heart failure underwent CPXs in a single university hospital. During the CPX, RR intervals was measured continuously and the HRV threshold (HRVT), defined as the inflection point of <5 ms2 of a high-frequency component (HFC) using the power spectrum analysis, was determined. Patients were divided into two groups according to the mean HFC at rest (high-HFC group, n = 34 and low-HFC group, n = 33). The high-HFC group showed good correlation between the VO2 at AT and HRVT (r = 0.63, p < 0.001) and strong agreement (mean difference, -0.38 mL/kg, p = 0.571). The low-HFC group also showed modest correlation (r = 0.41, p = 0.017) but poor agreement (mean differences, 3.75 mL/kg, p < 0.001). In conclusion, the HRVT obtained from electrocardiography may be a useful indicator for estimating AT in patients with heart failure.

6.
J Cardiol Cases ; 25(6): 363-366, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35685253

ABSTRACT

A new class of medicines called small interfering RNA molecule has demonstrated beneficial effects in patients with amyloidosis associated with mutations in transthyretin genes (ATTRv), but therapeutic effects towards His88Arg mutation were unknown. Here, we present two challenging cases of patisiran treatment for His88Arg variant. The first case is a 50-year-old male patient diagnosed with transthyretin amyloidosis cardiomyopathy with His88Arg mutation. Administration of patisiran 0.3 mg/kg every three weeks did not show any change in his symptoms. Echocardiography performed 1-year after drug initiation revealed progression of LV hypertrophy and systolic dysfunction with increased pleural effusion. The second case was a 63-year-old woman with heart failure (HF) caused by ATTRv cardiomyopathy with a His88Arg mutation. The patient began patisiran treatment 0.3 mg/kg every three weeks. Eleven months after beginning patisiran, her HF signs worsened with exacerbation of lung congestion and pleural effusion, resulting in hospitalization for decompensated HF. The two cases showed that treatment with patisiran for the patients with advanced stage of His88Arg ATTRv cardiomyopathy was unable to stop the progression of HF. Since the therapeutic response for each variant in ATTRv cardiomyopathy is unknown, further assessment of clinical efficacy for each individual variant is needed. .

7.
Int J Cardiol Heart Vasc ; 43: 101147, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36389267

ABSTRACT

Background: Exercise therapy for cardiovascular disease (CVD) is mainly evaluated based on the heart rate (HR) or Borg scale. However, these indices can be unreliable depending on the patient's medication or their subjective decisions; thus, alternative methods are required for easier and safer implementation of aerobic exercise. Here, we examined whether real-time analysis of HR variability (HRV) can help maintain exercise intensity at the ventilatory threshold (VT) during exercise. Methods: Twenty-eight patients with CVD treated at Keio University Hospital between August 2018 and March 2020 were enrolled. Initially, oxygen uptake (VO2) and HR at the VT were determined using the cardiopulmonary exercise test. Patients then performed aerobic exercise on a stationary bicycle for 30 min while a parameter of HRV, the high-frequency (HF) component, was monitored in real time using an electrocardiograph. The work rate during exercise was adjusted every 2 min to maintain the HF range between 5 and 10. The VO2 and HR values, recorded every 2 min during exercise, were compared with those at VT. The Bland-Altman method was used to confirm similarity. Results: VO2 and HR during exercise were closely correlated with those at VT (e.g., 19 min after exercise initiation; VO2: r = 0.647, HR: r = 0.534). The Bland-Altman plot revealed no bias between the mean values (e.g., 19 min; VO2: -0.22 mL/kg/min; HR: -0.07/min). Conclusion: Real-time HRV analysis with electrocardiograph alone during exercise can provide continuous and non-invasive exercise intensity measurements at VT, promoting safer and effective exercise strategies.

8.
ESC Heart Fail ; 9(2): 1474-1477, 2022 04.
Article in English | MEDLINE | ID: mdl-35060353

ABSTRACT

While 99m Tc-pyrophosphate scintigraphy is clearly useful in diagnosing transthyretin amyloid cardiomyopathy (ATTR-CM), it is necessary to know the pitfalls of this test for proper use. We present a rare case of concurrent ATTR-CM and amyloid light chain (AL) cardiomyopathy. The patient showed congestive heart failure with left ventricular hypertrophy. 99m Tc-pyrophosphate scintigraphy revealed abnormal cardiac uptake of Grade 3, a typical feature for ATTR-CM. However, the patient showed renal impairment with proteinuria and the presence of monoclonal gammopathy, which rather suggested AL amyloidosis. Endomyocardial biopsy, immunohistochemistry, and proteomic analysis by laser microdissection with liquid chromatography-coupled tandem mass spectrometry were performed, which finally confirmed both ATTR-CM and AL cardiomyopathy. This case implicates the importance of combining examinations and precisely interpreting the results to diagnose cardiac amyloidosis accurately.


Subject(s)
Amyloidosis , Prealbumin , Amyloidosis/diagnostic imaging , Humans , Proteomics , Radionuclide Imaging , Radiopharmaceuticals
9.
Eur J Med Genet ; 65(3): 104451, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35149236

ABSTRACT

Transthyretin (TTR)-related hereditary amyloidosis (ATTRv) is a rare autosomal dominant disorder that is caused by pathogenic missense mutation of the TTR gene. As of today, more than 150 TTR gene variants have been reported to occur as causal mutations. Herein, we present three familial patients of ATTRv caused by the Thr49Ser (p.Thr69Ser) variant, including their phenotypes and penetrance. The first patient was a 68-year-old woman with a history of carpal tunnel syndrome, who was referred to our department with heart failure symptoms. Echocardiography, 99mTechnetium (Tc)-pyrophosphate scintigraphy, and myocardial biopsy confirmed her diagnosis as TTR-related amyloidosis. Genetic testing for the TTR gene was performed, which confirmed the presence of a Thr49Ser (p.Thr69Ser) variant. The second patient, a 45-year-old woman, who was the niece of the first patient, presented with dyspnea on exertion. Her clinical manifestations included cardiac symptoms in addition to polyneuropathy. Similarly, myocardial biopsy showed TTR amyloid deposition within cardiac tissues, and TTR gene sequencing detected the presence of a Thr49Ser (p.Thr69Ser) variant. The final patient was a 42-year-old man, who was the nephew of the first patient, presented with numbness in his hands. Abdominal wall fat pad biopsy showed TTR amyloid deposition, and TTR gene sequencing was performed considering the familial history to confirm the presence of Thr49Ser (p.Thr69Ser) variant. No cardiac symptoms or dysfunctions have been observed yet, but imaging has detected TTR amyloid deposition in the heart. The present three patients with Thr49Ser (p.Thr69Ser) variant showed variation in phenotypes including cardiac and neurological manifestations at a fairly young age. In addition, the familial relationship in this report suggested that this variant is highly penetrant. Early genetic diagnosis due to collecting the genetic information from family medical history may be beneficial to improve patient prognosis via early therapeutic intervention.


Subject(s)
Amyloid Neuropathies, Familial , Polyneuropathies , Amyloid Neuropathies, Familial/diagnosis , Amyloid Neuropathies, Familial/genetics , Female , Humans , Japan , Prealbumin/genetics
10.
Metabolites ; 12(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35323653

ABSTRACT

Fatty acids (FAs) have structural and functional diversity. FAs in the heart are closely associated with cardiac function, and their qualitative or quantitative abnormalities lead to the onset and progression of cardiac disease. FAs are important as an energy substrate for the heart, but when in excess, they exhibit cardio-lipotoxicity that causes cardiac dysfunction or heart failure with preserved ejection fraction. FAs also play a role as part of phospholipids that compose cell membranes, and the changes in mitochondrial phospholipid cardiolipin and the FA composition of plasma membrane phospholipids affect cardiomyocyte survival. In addition, FA metabolites exert a wide variety of bioactivities in the heart as lipid mediators. Recent advances in measurement using mass spectrometry have identified trace amounts of n-3 polyunsaturated fatty acids (PUFAs)-derived bioactive metabolites associated with heart disease. n-3 PUFAs have a variety of cardioprotective effects and have been shown in clinical trials to be effective in cardiovascular diseases, including heart failure. This review outlines the contributions of FAs to cardiac function and pathogenesis of heart diseases from the perspective of three major roles and proposes therapeutic applications and new medical perspectives of FAs represented by n-3 PUFAs.

11.
PLoS One ; 16(7): e0255180, 2021.
Article in English | MEDLINE | ID: mdl-34297758

ABSTRACT

The efficacy of extensive balloon pulmonary angioplasty (BPA) beyond hemodynamic improvement in chronic thromboembolic pulmonary hypertension (CTEPH) patients has been verified. However, the relationship between extensive BPA in CTEPH patients after partial hemodynamic improvement and exercise tolerance or quality of life (QOL) remains unclear. We prospectively enrolled 22 CTEPH patients (66±10 years, females: 59%) when their mean pulmonary artery pressure initially decreased to <30 mmHg during BPA sessions. Hemodynamic and echocardiographic data, cardiopulmonary exercise testing, and QOL scores using the 36-item short form questionnaire (SF-36) were evaluated at enrollment (entry), just after the final BPA session (finish), and at the 6-month follow-up (follow-up). We analyzed whether extensive BPA improves exercise capacity and QOL scores over time. Moreover, the clinical characteristics leading to improvement were elucidated. The peak oxygen uptake (VO2) showed significant improvement at entry, finish, and follow-up (17.3±5.5, 18.4±5.9, and 18.9±5.3 mL/kg/min, respectively; P<0.001). Regarding the QOL, the physical component summary (PCS) scores significantly improved (32±11, 38±13, and 43±13, respectively; P<0.001), but the mental component summary scores remained unchanged. Linear regression analysis revealed that age and a low peak VO2 at entry were predictors of improvement in peak VO2, while low PCS scores and low TAPSE at entry were predictors of improvement in PCS scores. In conclusion, extensive BPA led to improved exercise tolerance and physical QOL scores, even in CTEPH patients with partially improved hemodynamics.


Subject(s)
Angioplasty, Balloon/adverse effects , Exercise Tolerance , Hypertension, Pulmonary/surgery , Postoperative Complications/epidemiology , Pulmonary Embolism/surgery , Quality of Life , Aged , Female , Hemodynamics , Humans , Hypertension, Pulmonary/rehabilitation , Male , Middle Aged , Oxygen Consumption , Postoperative Complications/rehabilitation , Pulmonary Embolism/rehabilitation
12.
Nat Commun ; 12(1): 2726, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976142

ABSTRACT

Patients with rare conditions such as cardiac amyloidosis (CA) are difficult to identify, given the similarity of disease manifestations to more prevalent disorders. The deployment of approved therapies for CA has been limited by delayed diagnosis of this disease. Artificial intelligence (AI) could enable detection of rare diseases. Here we present a pipeline for CA detection using AI models with electrocardiograms (ECG) or echocardiograms as inputs. These models, trained and validated on 3 and 5 academic medical centers (AMC) respectively, detect CA with C-statistics of 0.85-0.91 for ECG and 0.89-1.00 for echocardiography. Simulating deployment on 2 AMCs indicated a positive predictive value (PPV) for the ECG model of 3-4% at 52-71% recall. Pre-screening with ECG enhance the echocardiography model performance at 67% recall from PPV of 33% to PPV of 74-77%. In conclusion, we developed an automated strategy to augment CA detection, which should be generalizable to other rare cardiac diseases.


Subject(s)
Amyloidosis/diagnostic imaging , Artificial Intelligence , Echocardiography , Electrocardiography
13.
Sci Rep ; 11(1): 4929, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33654133

ABSTRACT

The lactate threshold (LT1), which is defined as the first rise in lactate concentration during incremental exercise, has not been non-invasively and conveniently determined in a clinical setting. We aimed to visualize changes in lactate concentration in sweat during exercise using our wearable lactate sensor and investigate the relationship between the lactate threshold (LT1) and ventilatory threshold (VT1). Twenty-three healthy subjects and 42 patients with cardiovascular diseases (CVDs) were enrolled. During exercise, the dynamic changes in lactate values in sweat were visualized in real-time with a sharp continuous increase up to volitional exhaustion and a gradual decrease during the recovery period. The LT1 in sweat was well correlated with the LT1 in blood and the VT1 (r = 0.92 and 0.71, respectively). In addition, the Bland-Altman plot described no bias between the mean values (mean differences: - 4.5 and 2.5 W, respectively). Continuous monitoring of lactate concentrations during exercise can provide additional information for detecting the VT1.


Subject(s)
Anaerobic Threshold , Cardiovascular Diseases/metabolism , Exercise Test , Lactic Acid/metabolism , Sweat/metabolism , Adult , Aged , Cardiovascular Diseases/physiopathology , Female , Humans , Male , Middle Aged
14.
NPJ Digit Med ; 3: 141, 2020.
Article in English | MEDLINE | ID: mdl-33145437

ABSTRACT

Regular aerobic physical activity is of utmost importance in maintaining a good health status and preventing cardiovascular diseases (CVDs). Although cardiopulmonary exercise testing (CPX) is an essential examination for noninvasive estimation of ventilatory threshold (VT), defined as the clinically equivalent to aerobic exercise, its evaluation requires an expensive respiratory gas analyzer and expertize. To address these inconveniences, this study investigated the feasibility of a deep learning (DL) algorithm with single-lead electrocardiography (ECG) for estimating the aerobic exercise threshold. Two hundred sixty consecutive patients with CVDs who underwent CPX were analyzed. Single-lead ECG data were stored as time-series voltage data with a sampling rate of 1000 Hz. The data of preprocessed ECG and time point at VT calculated by respiratory gas analyzer were used to train a neural network. The trained model was applied on an independent test cohort, and the DL threshold (DLT; a time of VT estimated through the DL algorithm) was calculated. We compared the correlation between oxygen uptake of the VT (VT-VO2) and the DLT (DLT-VO2). Our DL model showed that the DLT-VO2 was confirmed to be significantly correlated with the VT-VO2 (r = 0.875; P < 0.001), and the mean difference was nonsignificant (-0.05 ml/kg/min, P > 0.05), which displayed strong agreements between the VT and the DLT. The DL algorithm using single-lead ECG data enabled accurate estimation of VT in patients with CVDs. The DL algorithm may be a novel way for estimating aerobic exercise threshold.

SELECTION OF CITATIONS
SEARCH DETAIL