Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nanotechnology ; 26(39): 395301, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26351867

ABSTRACT

Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m(-1) range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering scaffolds.

2.
J Zhejiang Univ Sci B ; 6(5): 365-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15822148

ABSTRACT

Protonating the pyridine rings of poly(pyridine-2,5-diyl) with dodecybenzenesulfonic acid and camphorsulphonic acid produces polymer materials which can be dissolved in chloroform (in contrast to the unprotonated polymer, which can only be dissolved in strong acids such as formic acid) and allows mixing the protonated polymers with other chloroform soluble conjugated polymers for use in electronic devices. The protonating behavior of poly(pyridine-2,5-diyl) with two kinds of surfactants is different in some levels. Dodecybenzenesulfonic acid has higher protonating ability than camphorsulphonic acid.

3.
J Zhejiang Univ Sci B ; 6(8): 722-4, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16052703

ABSTRACT

Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results showed that this reaction belongs to the pseudo-first-order reaction with a rate constant k(obs) of 1.4 x 10(-5) s(-1) at room temperature. The presence or absence of air, oxygen, and nitrogen did not have obvious effects on the reaction rate under irradiation with light.


Subject(s)
Chloroform/chemistry , Chloroform/radiation effects , Photochemistry/methods , Thiophenes/chemistry , Thiophenes/radiation effects , Air , Chloroform/analysis , Kinetics , Light , Nitrogen/chemistry , Oxygen/chemistry , Thiophenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL