Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Mol Cell ; 84(1): 156-169, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38141606

ABSTRACT

Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.


Subject(s)
Proteins , Ubiquitins , Humans , Animals , Mice , Proteins/metabolism , Ubiquitination , Ubiquitins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Cell Physiological Phenomena
2.
Mol Cell ; 83(4): 607-621.e4, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36804914

ABSTRACT

Ribosome-associated quality control (RQC) is a conserved process degrading potentially toxic truncated nascent peptides whose malfunction underlies neurodegeneration and proteostasis decline in aging. During RQC, dissociation of stalled ribosomes is followed by elongation of the nascent peptide with alanine and threonine residues, driven by Rqc2 independently of mRNA, the small ribosomal subunit and guanosine triphosphate (GTP)-hydrolyzing factors. The resulting CAT tails (carboxy-terminal tails) and ubiquitination by Ltn1 mark nascent peptides for proteasomal degradation. Here we present ten cryogenic electron microscopy (cryo-EM) structures, revealing the mechanistic basis of individual steps of the CAT tailing cycle covering initiation, decoding, peptidyl transfer, and tRNA translocation. We discovered eIF5A as a crucial eukaryotic RQC factor enabling peptidyl transfer. Moreover, we observed dynamic behavior of RQC factors and tRNAs allowing for processivity of the CAT tailing cycle without additional energy input. Together, these results elucidate key differences as well as common principles between CAT tailing and canonical translation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Protein Biosynthesis , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Peptides/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Quality Control
3.
Mol Cell ; 82(18): 3424-3437.e8, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36113412

ABSTRACT

Cells can respond to stalled ribosomes by sensing ribosome collisions and employing quality control pathways. How ribosome stalling is resolved without collisions, however, has remained elusive. Here, focusing on noncolliding stalling exhibited by decoding-defective ribosomes, we identified Fap1 as a stalling sensor triggering 18S nonfunctional rRNA decay via polyubiquitination of uS3. Ribosome profiling revealed an enrichment of Fap1 at the translation initiation site but also an association with elongating individual ribosomes. Cryo-EM structures of Fap1-bound ribosomes elucidated Fap1 probing the mRNA simultaneously at both the entry and exit channels suggesting an mRNA stasis sensing activity, and Fap1 sterically hinders the formation of canonical collided di-ribosomes. Our findings indicate that individual stalled ribosomes are the potential signal for ribosome dysfunction, leading to accelerated turnover of the ribosome itself.


Subject(s)
Protein Biosynthesis , Ribosomes , RNA Stability , RNA, Messenger/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribosomes/metabolism
4.
Development ; 151(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38881530

ABSTRACT

HemK2 is a highly conserved methyltransferase, but the identification of its genuine substrates has been controversial, and its biological importance in higher organisms remains unclear. We elucidate the role of HemK2 in the methylation of eukaryotic Release Factor 1 (eRF1), a process that is essential for female germline development in Drosophila melanogaster. Knockdown of hemK2 in the germline cells (hemK2-GLKD) induces apoptosis, accompanied by a pronounced decrease in both eRF1 methylation and protein synthesis. Overexpression of a methylation-deficient eRF1 variant recapitulates the defects observed in hemK2-GLKD, suggesting that eRF1 is a primary methylation target of HemK2. Furthermore, hemK2-GLKD leads to a significant reduction in mRNA levels in germline cell. These defects in oogenesis and protein synthesis can be partially restored by inhibiting the No-Go Decay pathway. In addition, hemK2 knockdown is associated with increased disome formation, suggesting that disruptions in eRF1 methylation may provoke ribosomal stalling, which subsequently activates translation-coupled mRNA surveillance mechanisms that degrade actively translated mRNAs. We propose that HemK2-mediated methylation of eRF1 is crucial for ensuring efficient protein production and mRNA stability, which are vital for the generation of high-quality eggs.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Oogenesis , Protein Biosynthesis , RNA Stability , Animals , Oogenesis/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , RNA Stability/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Female , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics , Peptide Termination Factors/metabolism , Peptide Termination Factors/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Apoptosis/genetics , DEAD-box RNA Helicases
5.
Cell ; 151(5): 1042-54, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23178123

ABSTRACT

The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism.


Subject(s)
Multiprotein Complexes/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , Heat-Shock Proteins/genetics , Peptides/metabolism , Proteasome Endopeptidase Complex/metabolism , RNA-Binding Proteins , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological , Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism , Valosin Containing Protein
6.
Nature ; 578(7794): 296-300, 2020 02.
Article in English | MEDLINE | ID: mdl-32025036

ABSTRACT

The proteasome is a major proteolytic machine that regulates cellular proteostasis through selective degradation of ubiquitylated proteins1,2. A number of ubiquitin-related molecules have recently been found to be involved in the regulation of biomolecular condensates or membraneless organelles, which arise by liquid-liquid phase separation of specific biomolecules, including stress granules, nuclear speckles and autophagosomes3-8, but it remains unclear whether the proteasome also participates in such regulation. Here we reveal that proteasome-containing nuclear foci form under acute hyperosmotic stress. These foci are transient structures that contain ubiquitylated proteins, p97 (also known as valosin-containing protein (VCP)) and multiple proteasome-interacting proteins, which collectively constitute a proteolytic centre. The major substrates for degradation by these foci were ribosomal proteins that failed to properly assemble. Notably, the proteasome foci exhibited properties of liquid droplets. RAD23B, a substrate-shuttling factor for the proteasome, and ubiquitylated proteins were necessary for formation of proteasome foci. In mechanistic terms, a liquid-liquid phase separation was triggered by multivalent interactions of two ubiquitin-associated domains of RAD23B and ubiquitin chains consisting of four or more ubiquitin molecules. Collectively, our results suggest that ubiquitin-chain-dependent phase separation induces the formation of a nuclear proteolytic compartment that promotes proteasomal degradation.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Stress, Physiological , Ubiquitination , Cell Line , Cell Nucleus/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Humans , Osmotic Pressure , Polyubiquitin/metabolism , Proteolysis , Proteostasis , Ribosomal Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Valosin Containing Protein/metabolism
7.
Nature ; 571(7764): E4, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31235950

ABSTRACT

Change history: In this Letter, the bottom blot in Fig. 2g (for 'IB: Myc') was missing. This has been corrected online.

8.
Nature ; 570(7762): 538-542, 2019 06.
Article in English | MEDLINE | ID: mdl-31189955

ABSTRACT

Ribosome-associated quality control (RQC) provides a rescue pathway for eukaryotic cells to process faulty proteins after translational stalling of cytoplasmic ribosomes1-6. After dissociation of ribosomes, the stalled tRNA-bound peptide remains associated with the 60S subunit and extended by Rqc2 by addition of C-terminal alanyl and threonyl residues (CAT tails)7-9, whereas Vms1 catalyses cleavage and release of the peptidyl-tRNA before or after addition of CAT tails10-12. In doing so, Vms1 counteracts CAT-tailing of nuclear-encoded mitochondrial proteins that otherwise drive aggregation and compromise mitochondrial and cellular homeostasis13. Here we present structural and functional insights into the interaction of Saccharomyces cerevisiae Vms1 with 60S subunits in pre- and post-peptidyl-tRNA cleavage states. Vms1 binds to 60S subunits with its Vms1-like release factor 1 (VLRF1), zinc finger and ankyrin domains. VLRF1 overlaps with the Rqc2 A-tRNA position and interacts with the ribosomal A-site, projecting its catalytic GSQ motif towards the CCA end of the tRNA, its Y285 residue dislodging the tRNA A73 for nucleolytic cleavage. Moreover, in the pre-state, we found the ABCF-type ATPase Arb1 in the ribosomal E-site, which stabilizes the delocalized A73 of the peptidyl-tRNA and stimulates Vms1-dependent tRNA cleavage. Our structural analysis provides mechanistic insights into the interplay of the RQC factors Vms1, Rqc2 and Arb1 and their role in the protection of mitochondria from the aggregation of toxic proteins.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Homeostasis , Mitochondrial Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/ultrastructure , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/ultrastructure , Amino Acid Sequence , Carrier Proteins/ultrastructure , Cryoelectron Microscopy , Models, Molecular , Proteome/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/chemistry , Ribosome Subunits, Large, Eukaryotic/genetics , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosomes/chemistry , Ribosomes/genetics , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure
9.
Nucleic Acids Res ; 51(1): 253-270, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36583309

ABSTRACT

Ribosome collisions are recognized by E3 ubiquitin ligase Hel2/ZNF598, leading to RQC (ribosome-associated quality control) and to endonucleolytic cleavage and degradation of the mRNA termed NGD (no-go decay). NGD in yeast requires the Cue2 endonuclease and occurs in two modes, either coupled to RQC (NGDRQC+) or RQC uncoupled (NGDRQC-). This is mediated by an unknown mechanism of substrate recognition by Cue2. Here, we show that the ubiquitin binding activity of Cue2 is required for NGDRQC- but not for NGDRQC+, and that it involves the first two N-terminal Cue domains. In contrast, Trp122 of Cue2 is crucial for NGDRQC+. Moreover, Mbf1 is required for quality controls by preventing +1 ribosome frameshifting induced by a rare codon staller. We propose that in Cue2-dependent cleavage upstream of the collided ribosomes (NGDRQC-), polyubiquitination of eS7 is recognized by two N-terminal Cue domains of Cue2. In contrast, for the cleavage within collided ribosomes (NGDRQC+), the UBA domain, Trp122 and the interaction between Mbf1 and uS3 are critical.


Subject(s)
Endonucleases , Saccharomyces cerevisiae Proteins , Protein Biosynthesis , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Endonucleases/metabolism
10.
Genes Cells ; 28(8): 539-552, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37249032

ABSTRACT

A long-standing assumption in molecular biology posits that the conservation of protein and nucleic acid sequences emphasizes the functional significance of biomolecules. These conserved sequences fold into distinct secondary and tertiary structures, enable highly specific molecular interactions, and regulate complex yet organized molecular processes within living cells. However, recent evidence suggests that biomolecules can also function through primary sequence regions that lack conservation across species or gene families. These regions typically do not form rigid structures, and their inherent flexibility is critical for their functional roles. This review examines the emerging roles and molecular mechanisms of "nondomain biomolecules," whose functions are not easily predicted due to the absence of conserved functional domains. We propose the hypothesis that both domain- and nondomain-type molecules work together to enable flexible and efficient molecular processes within the highly crowded intracellular environment.


Subject(s)
Proteins , Proteins/genetics , Conserved Sequence , Biopolymers
11.
J Biol Chem ; 298(7): 102084, 2022 07.
Article in English | MEDLINE | ID: mdl-35636512

ABSTRACT

Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.


Subject(s)
Methionine Adenosyltransferase , S-Adenosylmethionine , Animals , Humans , Mammals/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Methionine/metabolism , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Methylation , RNA, Messenger/metabolism , S-Adenosylmethionine/metabolism
12.
EMBO J ; 38(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30609991

ABSTRACT

Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality control). RQC requires Hel2-dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2-dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di-ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo-EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2-mediated cleavages upstream of the disome, governed by initial Not4-mediated monoubiquitination of eS7 and followed by Hel2-mediated K63-linked polyubiquitination. We propose that Hel2-mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC+) and RQC coupled to the disome and that RQC-uncoupled NGD outside the disome (NGDRQC-) can occur in a Not4-dependent manner.


Subject(s)
Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomes/metabolism , Ribosomes/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Cryoelectron Microscopy , RNA Stability , RNA, Messenger/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
13.
Nucleic Acids Res ; 49(4): 2102-2113, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33511411

ABSTRACT

Ribosome stalling at tandem CGA codons or poly(A) sequences activates quality controls for nascent polypeptides including ribosome-associated quality control (RQC) and no-go mRNA decay (NGD). In RQC pathway, Hel2-dependent uS10 ubiquitination and the RQC-trigger (RQT) complex are essential for subunit dissociation, and Ltn1-dependent ubiquitination of peptidyl-tRNA in the 60S subunit requires Rqc2. Here, we report that polytryptophan sequences induce Rqc2-independent RQC. More than 11 consecutive tryptophan residues induced RQC in a manner dependent on Hel2-mediated ribosome ubiquitination and the RQT complex. Polytryptophan sequence-mediated RQC was not coupled with CAT-tailing, and Rqc2 was not required for Ltn1-dependent degradation of the arrest products. Eight consecutive tryptophan residues located at the region proximal to the peptidyl transferase center in the ribosome tunnel inhibited CAT-tailing by tandem CGA codons. Polytryptophan sequences also induced Hel2-mediated canonical RQC-coupled NGD and RQC-uncoupled NGD outside the stalled ribosomes. We propose that poly-tryptophan sequences induce Rqc2-independent RQC, suggesting that CAT-tailing in the 60S subunit could be modulated by the polypeptide in the ribosome exit tunnel.


Subject(s)
Peptides/metabolism , Protein Biosynthesis , RNA-Binding Proteins/physiology , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/physiology , Codon , Peptides/chemistry , RNA Stability , RNA, Messenger/metabolism , RNA, Transfer, Amino Acyl/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tryptophan/metabolism , Ubiquitination
14.
Nucleic Acids Res ; 49(12): 6893-6907, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34142161

ABSTRACT

Selenoprotein P (SELENOP) is a major plasma selenoprotein that contains 10 Sec residues, which is encoded by the UGA stop codon. The mRNA for SELENOP has the unique property of containing two Sec insertion sequence (SECIS) elements, which is located in the 3' untranslated region (3'UTR). Here, we coincidentally identified a novel gene, CCDC152, by sequence analysis. This gene was located in the antisense region of the SELENOP gene, including the 3'UTR region in the genome. We demonstrated that this novel gene functioned as a long non-coding RNA (lncRNA) that decreased SELENOP protein levels via translational rather than transcriptional, regulation. We found that the CCDC152 RNA interacted specifically and directly with the SELENOP mRNA and inhibited its binding to the SECIS-binding protein 2, resulting in the decrease of ribosome binding. We termed this novel gene product lncRNA inhibitor of SELENOP translation (L-IST). Finally, we found that epigallocatechin gallate upregulated L-IST in vitro and in vivo, to suppress SELENOP protein levels. Here, we provide a new regulatory mechanism of SELENOP translation by an endogenous long antisense ncRNA.


Subject(s)
Gene Expression Regulation , Protein Biosynthesis , RNA, Long Noncoding/metabolism , Selenoprotein P/genetics , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Line, Tumor , Down-Regulation , Humans , RNA, Long Noncoding/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/antagonists & inhibitors , Selenoprotein P/biosynthesis
15.
Nucleic Acids Res ; 48(3): 1084-1096, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31950154

ABSTRACT

During protein synthesis, translating ribosomes encounter many challenges imposed by various types of defective mRNAs that can lead to reduced cellular fitness and, in some cases, even threaten cell viability. Aberrant translation leads to activation of one of several quality control pathways depending on the nature of the problem. These pathways promote the degradation of the problematic mRNA as well as the incomplete translation product, the nascent polypeptide chain. Many of these quality control systems feature critical roles for specialized regulatory factors that work in concert with conventional factors. This review focuses on the mechanisms used by these quality control pathways to recognize aberrant ribosome stalling and discusses the conservation of these systems.


Subject(s)
Protein Biosynthesis , Ribosomes/metabolism , Peptides/metabolism , Proteasome Endopeptidase Complex/metabolism , RNA Stability , RNA, Messenger/metabolism , RNA, Ribosomal/metabolism , Ubiquitination
16.
Nucleic Acids Res ; 48(18): 10441-10455, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32941651

ABSTRACT

Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3' untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3' UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3' UTRs. The 3' UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3' UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3' UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3' UTRs of mRNAs may encode various products.


Subject(s)
Eukaryotic Initiation Factor-4G/genetics , GTP Cyclohydrolase/genetics , Open Reading Frames/genetics , TOR Serine-Threonine Kinases/genetics , 3' Untranslated Regions/genetics , Eukaryotic Initiation Factor-4E/genetics , Humans , Naphthyridines/pharmacology , Poliovirus/genetics , Protein Biosynthesis/genetics , RNA Caps/genetics , RNA, Messenger/genetics , RNA, Ribosomal, 18S/genetics , Ribosomes/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors
17.
Trends Biochem Sci ; 42(1): 5-15, 2017 01.
Article in English | MEDLINE | ID: mdl-27746049

ABSTRACT

Accurate gene expression is a prerequisite for all cellular processes. Quality control machineries respond to errors during protein synthesis by refolding polypeptides or targeting them for degradation. As another layer of gene expression control, aberrant mRNAs can also be detected and eliminated by mRNA quality control systems while engaging the ribosome. In this review, I focus on recent studies on the cotranslational quality control mechanisms induced by abnormal translational elongation and termination, which result in the rapid degradation of aberrant polypeptides and mRNAs. Emerging evidence indicates that the ribosome has central roles in quality control processes, acting as a platform for discrimination during protein biogenesis and for initiation of downstream events that determine the fate of aberrant polypeptides and mRNAs.


Subject(s)
Peptides/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomes/metabolism , Animals , Humans
18.
Biochem Biophys Res Commun ; 528(1): 186-192, 2020 07 12.
Article in English | MEDLINE | ID: mdl-32475637

ABSTRACT

eIF2α phosphorylation-mediated translational regulation is crucial for global repression of translation by various stresses, including the unfolded protein response (UPR) in eukaryotes. Although translational control during UPR has not been extensively investigated in S. cerevisiae, Hac1-mediated production of long transcripts containing uORFs was shown to repress the translation of histidine triad nucleotide-binding 1 (HNT1) mRNA. The present study showed that uORF3 is required for HNT1 expression, as well as down-regulating HNT1 translation. Translation initiation by uORF3 is inefficient, with uORF3 having a strong Kozak sequence efficiently repressing the translation of HNT1. We propose that leaky scanning of uORF3 is responsible for the downregulation of HNT1 during UPR.


Subject(s)
Down-Regulation , Endoplasmic Reticulum Stress , Hydrolases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , 5' Untranslated Regions/genetics , Base Sequence , Gene Expression Regulation, Fungal , Unfolded Protein Response
19.
Mol Cell ; 46(4): 518-29, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22503425

ABSTRACT

Translation arrest leads to an endonucleolytic cleavage of mRNA that is termed no-go decay (NGD). It has been reported that the Dom34:Hbs1 complex stimulates this endonucleolytic cleavage of mRNA induced by translation arrest in vivo and dissociates subunits of a stalled ribosome in vitro. Here we report that Dom34:Hbs1 dissociates the subunits of a ribosome that is stalled at the 3' end of mRNA in vivo, and has a crucial role in both NGD and nonstop decay. Dom34:Hbs1-mediated dissociation of a ribosome that is stalled at the 3' end of mRNA is required for degradation of a 5'-NGD intermediate. Dom34:Hbs1 facilitates the decay of nonstop mRNAs from the 3' end by exosomes and is required for the complete degradation of nonstop mRNA decay intermediates. We propose that Dom34:Hbs1 stimulates degradation of the 5'-NGD intermediate and of nonstop mRNA by dissociating the ribosome that is stalled at the 3' end of the mRNA.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , RNA Stability , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Base Sequence , Cell Cycle Proteins/chemistry , Endoribonucleases/chemistry , GTP-Binding Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nonsense Mediated mRNA Decay , Peptide Chain Elongation, Translational , Peptide Elongation Factors/chemistry , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry
20.
Int J Mol Sci ; 21(3)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050486

ABSTRACT

The eukaryotic proteome has to be precisely regulated at multiple levels of gene expression, from transcription, translation, and degradation of RNA and protein to adjust to several cellular conditions. Particularly at the translational level, regulation is controlled by a variety of RNA binding proteins, translation and associated factors, numerous enzymes, and by post-translational modifications (PTM). Ubiquitination, a prominent PTM discovered as the signal for protein degradation, has newly emerged as a modulator of protein synthesis by controlling several processes in translation. Advances in proteomics and cryo-electron microscopy have identified ubiquitin modifications of several ribosomal proteins and provided numerous insights on how this modification affects ribosome structure and function. The variety of pathways and functions of translation controlled by ubiquitin are determined by the various enzymes involved in ubiquitin conjugation and removal, by the ubiquitin chain type used, by the target sites of ubiquitination, and by the physiologic signals triggering its accumulation. Current research is now elucidating multiple ubiquitin-mediated mechanisms of translational control, including ribosome biogenesis, ribosome degradation, ribosome-associated protein quality control (RQC), and redox control of translation by ubiquitin (RTU). This review discusses the central role of ubiquitin in modulating the dynamism of the cellular proteome and explores the molecular aspects responsible for the expanding puzzle of ubiquitin signals and functions in translation.


Subject(s)
Protein Biosynthesis , Ubiquitin/metabolism , Ubiquitination , Animals , Humans , Models, Molecular , Oxidative Stress , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RNA Stability , Ribosomal Proteins/metabolism , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL