ABSTRACT
The response of terahertz to the presence of water content makes it an ideal analytical tool for hydration monitoring in agricultural applications. This study reports on the feasibility of terahertz sensing for monitoring the hydration level of freshly harvested leaves of Celtis sinensis by employing a imaging platform based on quantum cascade lasers and laser feedback interferometry. The imaging platform produces wide angle high resolution terahertz amplitude and phase images of the leaves at high frame rates allowing monitoring of dynamic water transport and other changes across the whole leaf. The complementary information in the resulting images was fed to a machine learning model aiming to predict relative water content from a single frame. The model was used to predict the change in hydration level over time. Results of the study suggest that the technique could have substantial potential in agricultural applications.
ABSTRACT
To reduce the water footprint in agriculture, the recent push toward precision irrigation management has initiated a sharp rise in photonics-based hydration sensing in plants in a non-contact, non-invasive manner. Here, this aspect of sensing was employed in the terahertz (THz) range for mapping liquid water in the plucked leaves of Bambusa vulgaris and Celtis sinensis. Two complementary techniques, broadband THz time-domain spectroscopic imaging and THz quantum cascade laser-based imaging, were utilized. The resulting hydration maps capture the spatial variations within the leaves as well as the hydration dynamics in various time scales. Although both techniques employed raster scanning to acquire the THz image, the results provide very distinct and different information. Terahertz time-domain spectroscopy provides rich spectral and phase information detailing the dehydration effects on the leaf structure, while THz quantum cascade laser-based laser feedback interferometry gives insight into the fast dynamic variation in dehydration patterns.
ABSTRACT
We have recently reported the self-pulsation phenomenon under strong optical feedback in terahertz (THz) quantum cascade lasers (QCLs). One important issue, however, we left open: the effect of multiple round trips in the external cavity on the laser response to feedback. Our current analysis also casts additional light on the phenomenon of self-pulsations. Using only one external cavity round trip (ECRT) in the model has been the common approach following the seminal paper by Lang-Kobayashi in 1980. However, the conditions under which the Lang-Kobayashi model, in its original single-ECRT formulation, is applicable has been rarely explored. In this work, we investigate the self-pulsation phenomenon under multiple ECRTs. We found that the self-pulsation waveform changes when considering more than one ECRT. This we attribute to the combined effect of the extended external cavity length and the frequency modulation of the pulsation frequency by the optical feedback. Our findings add to the understanding of the optical feedback dynamics under multiple ECRTs and provide a pathway for selecting the appropriate numerical model to study the optical feedback dynamics in THz QCLs and semiconductor lasers in general.
ABSTRACT
In this article, we explore the interplay between the self-pulsations (SPs) and self-mixing (SM) signals generated in terahertz (THz) quantum cascade lasers (QCLs) under optical feedback. We find that optical feedback dynamics in a THz QCL, namely, SPs, modulate the conventional SM interference fringes in a laser feedback interferometry system. The phenomenon of fringe loss in the SM signal - well known in interband diode lasers - was also observed along with pronounced SPs. With an increasing optical feedback strength, SM interference fringes transition from regular fringes at weak feedback (C ≤ 1) to fringes modulated by SPs under moderate feedback (1 < C ≤ 4.6), and then [under strong feedback (C > 4.6)] to a SM waveform with reduced number of fringes modulated by SP, until eventually (under even greater feedback) all the fringes are lost and only SPs are left visible. The transition route described above was identified in simulation when the SM fringes are created either by a moving target or a current modulation of the THz QCL. This SM signal transition route was successfully validated experimentally in a pulsed mode THz QCL with SM fringes created by current modulation during the pulse. The effects of SP dynamics in laser feedback interferometric system investigated in this work not only provides a further understanding of nonlinear dynamics in a THz QCL but also helps to understand the SM waveforms generated in a THz QCLs when they are used for various sensing and imaging applications.
ABSTRACT
The state of the art terahertz-frequency quantum cascade lasers have opened a plethora of applications over the past two decades by testing several designs up to the very limit of operating temperature, optical power and lasing frequency performance. The temperature degradation mechanisms have long been under the debate for limiting the operation up to 210 K in pulsed operation in the GaAs/AlGaAs material system. In this work, we review the existing designs and exploit two main temperature degradation mechanisms by presenting a design in which they both prove beneficial to the lasing operation by dual pumping and dual extracting lasing levels. We have applied the density matrix transport model to select potential candidate structures by simulating over two million active region designs. We present several designs which offer better performance than the current record structure.
ABSTRACT
The typical modal characteristics arising during laser feedback interferometry (LFI) in multi-mode terahertz (THz) quantum cascade lasers (QCLs) are investigated in this work. To this end, a set of multi-mode reduced rate equations with gain saturation for a general Fabry-Pérot multi-mode THz QCL under optical feedback is developed. Depending on gain bandwidth of the laser and optical feedback level, three different operating regimes are identified, namely a single-mode regime, a multi-mode regime, and a tuneable-mode regime. When the laser operates in the single-mode and multi-mode regimes, the self-mixing signal amplitude (peak to peak value of the self-mixing fringes) is proportional to the feedback coupling rate at each mode frequency. However, this rule no longer holds when the laser enters into the tuneable-mode regime, in which the feedback level becomes sufficiently strong (the boundary value of the feedback level depends on the gain bandwidth). The mapping of the identified feedback regimes of the multi-mode THz QCL in the space of the gain bandwidth and feedback level is investigated. In addition, the dependence of the aforementioned mapping of these three regimes on the linewidth enhancement factor of the laser is also explored, which provides a systematic picture of the potential of LFI in multi-mode THz QCLs for spectroscopic sensing applications.
ABSTRACT
We report a coherent terahertz (THz) imaging system that utilises a quantum cascade laser (QCL) operating in pulsed-mode as both the source and detector. The realisation of a short-pulsed THz QCL feedback interferometer permits both high peak powers and improved thermal efficiency, which enables the cryogen-free operation of the system. In this work, we demonstrated pulsed-mode swept-frequency laser feedback interferometry experimentally. Our interferometric detection scheme not only permits the simultaneous creation of both amplitude and phase images, but inherently suppresses unwanted background radiation. We demonstrate that the proposed system utilising microsecond pulses has the potential to achieve 0.25 mega-pixel per second acquisition rates, paving the pathway to video frame rate THz imaging.
ABSTRACT
We propose a laser feedback interferometer operating at multiple terahertz (THz) frequency bands by using a pulsed coupled-cavity THz quantum cascade laser (QCL) under optical feedback. A theoretical model that contains multi-mode reduced rate equations and thermal equations is presented, which captures the interplay between electro-optical, thermal, and feedback effects. By using the self-heating effect in both active and passive cavities, self-mixing signal responses at three different THz frequency bands are predicted. A multi-spectral laser feedback interferometry system based on such a coupled-cavity THz QCL will permit ultra-high-speed sensing and spectroscopic applications including material identification.
ABSTRACT
A prospective comparative study assessing the importance of the intra-operative dynamic rotational tracking-especially in the treatment of astigmatisms in corneal refractive Excimer laser correction-concerning clinical outcomes is presented. The cyclotorsion from upright to supine position was measured using iris image comparison. The Group 1 of patients was additionally treated with cyclorotational control and Group 2 only with X-Y control. Significant differences were observed between the groups regarding the mean postoperative cylinder refraction (p < 0.05). The mean cyclotorsion can be calculated to 3.75° with a standard deviation of 3.1°. The total range of torsion was from -14.9° to +12.6°. Re-treatment rate was 2.2% in Group 1 and 8.2% in Group 2, which is highly significant (p < 0.01). The investigation confirms that the dynamic rotational tracking system used for LASIK results in highly predictable refraction quality with significantly less postoperative re-treatments.
Subject(s)
Lasers, Excimer , Humans , Iris , Myopia , Prospective Studies , Refraction, Ocular , Treatment OutcomeABSTRACT
We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current-voltage (I-V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated. Strong enhancement of the self-mixing voltage signal due to non-linearity of the (I-V) characteristics is predicted and confirmed experimentally in an exemplar 2.6 THz bound-to-continuum QCL.
ABSTRACT
Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.
ABSTRACT
We propose a self-consistent method for the analysis of granular materials at terahertz (THz) frequencies using a quantum cascade laser. The method is designed for signals acquired from a laser feedback interferometer, and applied to non-contact reflection-mode sensing. Our technique is demonstrated using three plastic explosives, achieving good agreement with reference measurements obtained by THz time-domain spectroscopy in transmission geometry. The technique described in this study is readily scalable: replacing a single laser with a small laser array, with individual lasers operating at different frequencies will enable unambiguous identification of select materials. This paves the way towards non-contact, reflection-mode analysis and identification of granular materials at THz frequencies using quantum cascade lasers.
ABSTRACT
Recently, we demonstrated an interferometric materials analysis scheme at terahertz frequencies based on the self-mixing effect in terahertz quantum cascade lasers. Here, we examine the impact of variations in laser operating parameters, target characteristics, laser-target system properties, and the quality calibration standards on our scheme. We show that our coherent scheme is intrinsically most sensitive to fluctuations in interferometric phase, arising primarily from variations in external cavity length. Moreover we demonstrate that the smallest experimental uncertainties in the determination of extinction coefficients are expected for lossy materials.
ABSTRACT
ZnO-based heterostructures are up-and-coming candidates for terahertz (THz) optoelectronic devices, largely owing to their innate material attributes. The significant ZnO LO-phonon energy plays a pivotal role in mitigating thermally induced LO-phonon scattering, potentially significantly elevating the temperature performance of quantum cascade lasers (QCLs). In this work, we calculate the electronic structure and absorption of ZnO/ZnMgO multiple semiconductor quantum wells (MQWs) and the current density-voltage characteristics of nonpolar m-plane ZnO/ZnMgO double-barrier resonant tunnelling diodes (RTDs). Both MQWs and RTDs are considered here as two building blocks of a QCL. We show how the doping, Mg percentage and layer thickness affect the absorption of MQWs at room temperature. We confirm that in the high doping concentrations regime, a full quantum treatment that includes the depolarisation shift effect must be considered, as it shifts mid-infrared absorption peak energy for several tens of meV. Furthermore, we also focus on the performance of RTDs for various parameter changes and conclude that, to maximise the peak-to-valley ratio (PVR), the optimal doping density of the analysed ZnO/Zn88Mg12O double-barrier RTD should be approximately 1018 cm-3, whilst the optimal barrier thickness should be 1.3 nm, with a Mg mole fraction of ~9%.
ABSTRACT
In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around 1.0 · 10 15 - 2.0 · 10 15 cm - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs.
ABSTRACT
The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.
ABSTRACT
Early detection of skin pathologies with current clinical diagnostic tools is challenging, particularly when there are no visible colour changes or morphological cues present on the skin. In this study, we present a terahertz (THz) imaging technology based on a narrow band quantum cascade laser (QCL) at 2.8 THz for human skin pathology detection with diffraction limited spatial resolution. THz imaging was conducted for three different groups of unstained human skin samples (benign naevus, dysplastic naevus, and melanoma) and compared to the corresponding traditional histopathologic stained images. The minimum thickness of dehydrated human skin that can provide THz contrast was determined to be 50 µm, which is approximately one half-wavelength of the THz wave used. The THz images from different types of 50 µm-thick skin samples were well correlated with the histological findings. The per-sample locations of pathology vs healthy skin can be separated from the density distribution of the corresponding pixels in the THz amplitude-phase map. The possible THz contrast mechanisms relating to the origin of image contrast in addition to water content were analyzed from these dehydrated samples. Our findings suggest that THz imaging could provide a feasible imaging modality for skin cancer detection that is beyond the visible.
ABSTRACT
We demonstrate terahertz (THz) frequency imaging using a single quantum cascade laser (QCL) device for both generation and sensing of THz radiation. Detection is achieved by utilizing the effect of self-mixing in the THz QCL, and, specifically, by monitoring perturbations to the voltage across the QCL, induced by light reflected from an external object back into the laser cavity. Self-mixing imaging offers high sensitivity, a potentially fast response, and a simple, compact optical design, and we show that it can be used to obtain high-resolution reflection images of exemplar structures.
ABSTRACT
The fast modulation of lasers is a fundamental requirement for applications in optical communications, high-resolution spectroscopy and metrology. In the terahertz-frequency range, the quantum-cascade laser (QCL) is a high-power source with the potential for high-frequency modulation. However, conventional electronic modulation is limited fundamentally by parasitic device impedance, and so alternative physical processes must be exploited to modulate the QCL gain on ultrafast timescales. Here, we demonstrate an alternative mechanism to modulate the emission from a QCL device, whereby optically-generated acoustic phonon pulses are used to perturb the QCL bandstructure, enabling fast amplitude modulation that can be controlled using the QCL drive current or strain pulse amplitude, to a maximum modulation depth of 6% in our experiment. We show that this modulation can be explained using perturbation theory analysis. While the modulation rise-time was limited to ~800 ps by our measurement system, theoretical considerations suggest considerably faster modulation could be possible.
ABSTRACT
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.