Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Immunity ; 48(1): 107-119.e4, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29329948

ABSTRACT

Natural killer (NK) cells are innate lymphoid cells, and their presence within human tumors correlates with better prognosis. However, the mechanisms by which NK cells control tumors in vivo are unclear. Here, we used reflectance confocal microscopy (RCM) imaging in humans and in mice to visualize tumor architecture in vivo. We demonstrated that signaling via the NK cell receptor NKp46 (human) and Ncr1 (mouse) induced interferon-γ (IFN-γ) secretion from intratumoral NK cells. NKp46- and Ncr1-mediated IFN-γ production led to the increased expression of the extracellular matrix protein fibronectin 1 (FN1) in the tumors, which altered primary tumor architecture and resulted in decreased metastases formation. Injection of IFN-γ into tumor-bearing mice or transgenic overexpression of Ncr1 in NK cells in mice resulted in decreased metastasis formation. Thus, we have defined a mechanism of NK cell-mediated control of metastases in vivo that may help develop NK cell-dependent cancer therapies.


Subject(s)
Antigens, Ly/metabolism , Fibronectins/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Neoplasms/metabolism , Animals , Blotting, Western , Female , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Mice , Microscopy, Confocal , Neoplasm Metastasis/genetics , Neoplasms/pathology , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics
2.
Immunity ; 48(5): 951-962.e5, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768178

ABSTRACT

Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.


Subject(s)
Immunologic Memory/immunology , Killer Cells, Natural/immunology , Transcriptome/immunology , Uterus/immunology , Animals , Cell Line, Tumor , Decidua/immunology , Decidua/metabolism , Female , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Pregnancy , Uterus/cytology , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor A/metabolism
3.
PLoS Pathog ; 20(1): e1011923, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38215172

ABSTRACT

Natural killer cells (NKs) found during pregnancy at the maternal-fetal interface named decidual (d)NKs, show signs of education following first pregnancy, resulting in better placentation and fetus-growth, hence termed pregnancy trained dNKs (PTdNKs). Here we show that PTdNKs provide increased protection of the fetus from Fusobacterium nucleatum (FN) infection. We demonstrate that PTdNKs secrete elevated amounts of the bacteriocidal protein granulysin (GNLY) upon incubation with FN compared to dNKs derived from first pregnancies, which leads to increased killing of FN. Furthermore, we showed mechanistically that the GNLY secretion is mediated through the interaction of the FN's Fap2 protein with Gal-GalNAc present on PTdNKs. Finally, we show in vivo, using GNLY-tg mice that enhanced protection of the fetuses from FN infection is observed, as compared to wild type and that this enhance protection is NK cell dependent. Altogether, we show a new function for PTdNKs as protectors of the fetus from bacterial infection.


Subject(s)
Decidua , Fusobacterium nucleatum , Pregnancy , Female , Mice , Animals , Decidua/metabolism , Killer Cells, Natural/metabolism
4.
Immunity ; 42(2): 344-355, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25680274

ABSTRACT

Bacteria, such as Fusobacterium nucleatum, are present in the tumor microenvironment. However, the immunological consequences of intra-tumoral bacteria remain unclear. Here, we have shown that natural killer (NK) cell killing of various tumors is inhibited in the presence of various F. nucleatum strains. Our data support that this F. nucleatum-mediated inhibition is mediated by human, but not by mouse TIGIT, an inhibitory receptor present on all human NK cells and on various T cells. Using a library of F. nucleatum mutants, we found that the Fap2 protein of F. nucleatum directly interacted with TIGIT, leading to the inhibition of NK cell cytotoxicity. We have further demonstrated that tumor-infiltrating lymphocytes expressed TIGIT and that T cell activities were also inhibited by F. nucleatum via Fap2. Our results identify a bacterium-dependent, tumor-immune evasion mechanism in which tumors exploit the Fap2 protein of F. nucleatum to inhibit immune cell activity via TIGIT.


Subject(s)
Adenocarcinoma/immunology , Adenocarcinoma/microbiology , Colonic Neoplasms/immunology , Colonic Neoplasms/microbiology , Fusobacterium nucleatum/immunology , Receptors, Immunologic/immunology , Tumor Escape/immunology , Tumor Microenvironment/immunology , Animals , Bacterial Outer Membrane Proteins/immunology , Cell Line , Cell Proliferation , Humans , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Protein Binding
5.
Eur J Immunol ; 51(9): 2218-2224, 2021 09.
Article in English | MEDLINE | ID: mdl-34268737

ABSTRACT

Neutrophils play a crucial role in immune defense against and clearance of uropathogenic Escherichia coli (UPEC)-mediated urinary tract infection, the most common bacterial infection in healthy humans. CD300a is an inhibitory receptor that binds phosphatidylserine and phosphatidylethanolamine, presented on the membranes of apoptotic cells. CD300a binding to phosphatidylserine and phosphatidylethanolamine, also known as the "eat me" signal, mediates immune tolerance to dying cells. Here, we demonstrate for the first time that CD300a plays an important role in the neutrophil-mediated immune response to UPEC-induced urinary tract infection. We show that CD300a-deficient neutrophils have impaired phagocytic abilities and despite their increased accumulation at the site of infection, they are unable to reduce bacterial burden in the bladder, which results in significant exacerbation of infection and worse host outcome. Finally, we demonstrate that UPEC's pore forming toxin α-hemolysin induces upregulation of the CD300a ligand on infected bladder epithelial cells, signaling to neutrophils to be cleared.


Subject(s)
Escherichia coli Infections/prevention & control , Neutrophils/immunology , Receptors, Immunologic/deficiency , Receptors, Immunologic/immunology , Urinary Tract Infections/immunology , Uropathogenic Escherichia coli/immunology , Animals , Apoptosis/immunology , Escherichia coli Infections/immunology , Escherichia coli Proteins/metabolism , Female , Gene Knockout Techniques , Hemolysin Proteins/metabolism , Mice , Mice, Inbred BALB C , Phagocytosis/genetics , Phagocytosis/immunology , Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Receptors, Immunologic/genetics , Urinary Bladder/immunology , Urinary Bladder/microbiology , Urinary Bladder/pathology , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/growth & development
7.
Cancer Immunol Immunother ; 68(10): 1721-1724, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31606778

ABSTRACT

Natural killer (NK) cells are innate immune lymphocytes which express an array of activating and inhibitory receptors. These receptors bind a large spectrum of ligands, which are expressed on stressed, malignantly transformed or virally infected cells, as well as on bacterial, fungal, and parasitic pathogens. The decision on whether or not to kill the target is based on the integration of activating and inhibitory signals sent downstream from NK cell receptors. One of the most prominent NK cell activating receptor families is the family of natural cytotoxicity receptors (NCRs) which includes NKp30, NKp44, and NKp46. NKp46 is the only NCR to have a fully functional mouse orthologue denoted Ncr1. Despite a large body of evidence highlighting its importance in the clearance of both solid and liquid tumors, the membrane-bound tumor ligand for NKp46 and its mouse orthologue Ncr1 is still unknown. Here we review the discovery of a novel role for NKp46/Ncr1, not only in tumor clearance but also in prevention of metastasis by structural editing of primary tumors.


Subject(s)
Killer Cells, Natural/immunology , Neoplasms/prevention & control , Receptors, Natural Killer Cell/metabolism , Animals , Humans , Mice , Neoplasm Metastasis , Neoplasms/immunology , Neoplasms/metabolism
8.
Eur J Immunol ; 47(4): 692-703, 2017 04.
Article in English | MEDLINE | ID: mdl-28191644

ABSTRACT

Natural killer (NK) cells are capable of killing various pathogens upon stimulation of activating receptors. Human metapneumovirus (HMPV) is a respiratory virus, which was discovered in 2001 and is responsible for acute respiratory tract infection in infants and children worldwide. HMPV infection is very common, infecting around 70% of all children under the age of five. Under immune suppressive conditions, HMPV infection can be fatal. Not much is known on how NK cells respond to HMPV. In this study, using reporter assays and NK-cell cytotoxicity assays performed with human and mouse NK cells, we demonstrated that the NKp46-activating receptor and its mouse orthologue Ncr1, both members of the natural cytotoxicity receptor (NCR) family, recognized an unknown ligand expressed by HMPV-infected human cells. We demonstrated that MHC class I is upregulated and MICA is downregulated upon HMPV infection. We also characterized mouse NK-cell phenotype in the blood and the lungs of HMPV-infected mice and found that lung NK cells are more activated and expressing NKG2D, CD43, CD27, KLRG1, and CD69 compared to blood NK cells regardless of HMPV infection. Finally, we demonstrated, using Ncr1-deficient mice, that NCR1 plays a critical role in controlling HMPV infection.


Subject(s)
Antigens, Ly/metabolism , Killer Cells, Natural/immunology , Lung/immunology , Metapneumovirus/immunology , Natural Cytotoxicity Triggering Receptor 1/metabolism , Paramyxoviridae Infections/immunology , Animals , Antigens, Ly/genetics , Child , Cytotoxicity, Immunologic , HEK293 Cells , Humans , Infant , Killer Cells, Natural/virology , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Knockout , Natural Cytotoxicity Triggering Receptor 1/genetics , Viral Load
9.
J Virol ; 91(19)2017 10 01.
Article in English | MEDLINE | ID: mdl-28724773

ABSTRACT

The recent approval of oncolytic virus for therapy of melanoma patients has increased the need for precise evaluation of the mechanisms by which oncolytic viruses affect tumor growth. Here we show that the human NK cell-activating receptor NKp46 and the orthologous mouse protein NCR1 recognize the reovirus sigma1 protein in a sialic-acid-dependent manner. We identify sites of NKp46/NCR1 binding to sigma1 and show that sigma1 binding by NKp46/NCR1 leads to NK cell activation in vitro Finally, we demonstrate that NCR1 activation is essential for reovirus-based therapy in vivo Collectively, we have identified sigma1 as a novel ligand for NKp46/NCR1 and demonstrated that NKp46/NCR1 is needed both for clearance of reovirus infection and for reovirus-based tumor therapy.IMPORTANCE Reovirus infects much of the population during childhood, causing mild disease, and hence is considered to be efficiently controlled by the immune system. Reovirus also specifically infects tumor cells, leading to tumor death, and is currently being tested in human clinical trials for cancer therapy. The mechanisms by which our immune system controls reovirus infection and tumor killing are not well understood. We report here that natural killer (NK) cells recognize a viral protein named sigma1 through the NK cell-activating receptor NKp46. Using several mouse tumor models, we demonstrate the importance of NK cells in protection from reovirus infection and in reovirus killing of tumors in vivo Collectively, we identify a new ligand for the NKp46 receptor and provide evidence for the importance of NKp46 in the control of reovirus infections and in reovirus-based cancer therapy.


Subject(s)
Antigens, Ly/metabolism , Killer Cells, Natural/immunology , Mammalian orthoreovirus 3/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Oncolytic Virotherapy/methods , Oncolytic Viruses/metabolism , Viral Proteins/metabolism , Animals , Binding Sites , Chlorocebus aethiops , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Humans , Lymphocyte Activation/immunology , Melanoma/therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , N-Acetylneuraminic Acid/metabolism , Vero Cells , Viral Proteins/genetics
10.
iScience ; 26(8): 107284, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37609636

ABSTRACT

Natural killer (NK) cells are currently used in clinical trials to treat tumors. However, such therapies still suffer from problems such as donor variability, reproducibility, and more, which prevent a wider use of NK cells therapeutics. Here we show a potential immunotherapy combining NK cell-mediated tumor eradiation and long non-coding (lnc) RNAs. We overexpressed the interferon (IFN) γ secretion-enhancing lncRNA nettoie Salmonella pas Theiler's (NeST) in the NK cell-like cell line YTS. YTS cells express the co-stimulatory receptor 2B4 whose main ligand is CD48. On YTS cells, 2B4 functions by direct activation. We showed that NeST overexpression in YTS cells resulted in increased IFNγ release upon interaction with CD48 (selectively enhanced (se)YTS cells). Following irradiation, the seYTS cells lost proliferation capacity but were still able to maintain their killing and IFNγ secretion capacities. Finally, we demonstrated that irradiated seYTS inhibit tumor growth in vivo. Thus, we propose seYTS cells as off-the-shelve therapy for CD48-expressing tumors.

SELECTION OF CITATIONS
SEARCH DETAIL