Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nature ; 539(7628): 254-258, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27799655

ABSTRACT

The optimal foraging strategy in a given environment depends on the number of competing individuals and their behavioural strategies. Little is known about the genes and neural circuits that integrate social information into foraging decisions. Here we show that ascaroside pheromones, small glycolipids that signal population density, suppress exploratory foraging in Caenorhabditis elegans, and that heritable variation in this behaviour generates alternative foraging strategies. We find that natural C. elegans isolates differ in their sensitivity to the potent ascaroside icas#9 (IC-asc-C5). A quantitative trait locus (QTL) regulating icas#9 sensitivity includes srx-43, a G-protein-coupled icas#9 receptor that acts in the ASI class of sensory neurons to suppress exploration. Two ancient haplotypes associated with this QTL confer competitive growth advantages that depend on ascaroside secretion, its detection by srx-43 and the distribution of food. These results suggest that balancing selection at the srx-43 locus generates alternative density-dependent behaviours, fulfilling a prediction of foraging game theory.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Feeding Behavior , Selection, Genetic , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/isolation & purification , Caenorhabditis elegans Proteins/metabolism , Feeding Behavior/drug effects , Food , Game Theory , Haplotypes , Hexoses/metabolism , Hexoses/pharmacology , Indoles/pharmacology , Male , Pheromones/metabolism , Pheromones/pharmacology , Population Density , Quantitative Trait Loci , Receptors, G-Protein-Coupled/metabolism , Sensory Receptor Cells/metabolism , Social Behavior
2.
bioRxiv ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38077032

ABSTRACT

A typical neuron signals to downstream cells when it is depolarized and firing sodium spikes. Some neurons, however, also fire calcium spikes when hyperpolarized. The function of such bidirectional signaling remains unclear in most circuits. Here we show how a neuron class that participates in vector computation in the fly central complex employs hyperpolarization-elicited calcium spikes to invert two-dimensional mathematical vectors. When cells switch from firing sodium to calcium spikes, this leads to a ~180° realignment between the vector encoded in the neuronal population and the fly's internal heading signal, thus inverting the vector. We show that the calcium spikes rely on the T-type calcium channel Ca-α1T, and argue, via analytical and experimental approaches, that these spikes enable vector computations in portions of angular space that would otherwise be inaccessible. These results reveal a seamless interaction between molecular, cellular and circuit properties for implementing vector math in the brain.

3.
J Biol Chem ; 286(18): 16414-25, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21454671

ABSTRACT

The Kv2.1 channel generates a delayed-rectifier current in neurons and is responsible for modulation of neuronal spike frequency and membrane repolarization in pancreatic ß-cells and cardiomyocytes. As with other tetrameric voltage-activated K(+)-channels, it has been proposed that each of the four Kv2.1 voltage-sensing domains activates independently upon depolarization, leading to a final concerted transition that causes channel opening. The mechanism by which voltage-sensor activation is coupled to the gating of the pore is still not understood. Here we show that the carbon-monoxide releasing molecule 2 (CORM-2) is an allosteric inhibitor of the Kv2.1 channel and that its inhibitory properties derive from the CORM-2 ability to largely reduce the voltage dependence of the opening transition, uncoupling voltage-sensor activation from the concerted opening transition. We additionally demonstrate that CORM-2 modulates Shaker K(+)-channels in a similar manner. Our data suggest that the mechanism of inhibition by CORM-2 may be common to voltage-activated channels and that this compound should be a useful tool for understanding the mechanisms of electromechanical coupling.


Subject(s)
Ion Channel Gating/drug effects , Organometallic Compounds/pharmacology , Potassium Channel Blockers/pharmacology , Shab Potassium Channels/antagonists & inhibitors , Shab Potassium Channels/metabolism , Shaker Superfamily of Potassium Channels/antagonists & inhibitors , Shaker Superfamily of Potassium Channels/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Insulin-Secreting Cells/metabolism , Ion Channel Gating/physiology , Membrane Potentials/drug effects , Protein Structure, Tertiary , Rats , Shab Potassium Channels/genetics , Shaker Superfamily of Potassium Channels/genetics , Xenopus laevis
4.
J Gen Physiol ; 152(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32110806

ABSTRACT

Slow inactivation has been described in multiple voltage-gated K+ channels and in great detail in the Drosophila Shaker channel. Structural studies have begun to facilitate a better understanding of the atomic details of this and other gating mechanisms. To date, the only voltage-gated potassium channels whose structure has been solved are KvAP (x-ray diffraction), the KV1.2-KV2.1 "paddle" chimera (x-ray diffraction and cryo-EM), KV1.2 (x-ray diffraction), and ether-à-go-go (cryo-EM); however, the structural details and mechanisms of slow inactivation in these channels are unknown or poorly characterized. Here, we present a detailed study of slow inactivation in the rat KV1.2 channel and show that it has some properties consistent with the C-type inactivation described in Shaker. We also study the effects of some mutations that are known to modulate C-type inactivation in Shaker and show that qualitative and quantitative differences exist in their functional effects, possibly underscoring subtle but important structural differences between the C-inactivated states in Shaker and KV1.2.


Subject(s)
Ion Channel Gating , Kv1.2 Potassium Channel , Animals , Kv1.2 Potassium Channel/metabolism , Rats , Xenopus laevis/metabolism
5.
Nat Neurosci ; 23(9): 1168-1175, 2020 09.
Article in English | MEDLINE | ID: mdl-32690967

ABSTRACT

Many experimental approaches rely on controlling gene expression in select subsets of cells within an individual animal. However, reproducibly targeting transgene expression to specific fractions of a genetically defined cell type is challenging. We developed Sparse Predictive Activity through Recombinase Competition (SPARC), a generalizable toolkit that can express any effector in precise proportions of post-mitotic cells in Drosophila. Using this approach, we demonstrate targeted expression of many effectors in several cell types and apply these tools to calcium imaging of individual neurons and optogenetic manipulation of sparse cell populations in vivo.


Subject(s)
Genetic Techniques , Neurons , Recombinases , Transgenes , Animals , Drosophila
6.
J Gen Physiol ; 145(4): 345-58, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25779871

ABSTRACT

Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13-14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker's, accounting for the smaller Kv1.2 gating charge.


Subject(s)
Ion Channel Gating , Kv1.2 Potassium Channel/metabolism , Amino Acid Sequence , Animals , Kv1.2 Potassium Channel/chemistry , Membrane Potentials , Molecular Sequence Data , Static Electricity , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL