Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
J Am Chem Soc ; 144(37): 17022-17032, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36084022

ABSTRACT

NAD+-reducing [NiFe] hydrogenases are valuable biocatalysts for H2-based energy conversion and the regeneration of nucleotide cofactors. While most hydrogenases are sensitive toward O2 and elevated temperatures, the soluble NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus (HtSH) is O2-tolerant and thermostable. Thus, it represents a promising candidate for biotechnological applications. Here, we have investigated the catalytic activity and active-site structure of native HtSH and variants in which a glutamate residue in the active-site cavity was replaced by glutamine, alanine, and aspartate. Our biochemical, spectroscopic, and theoretical studies reveal that at least two active-site states of oxidized HtSH feature an unusual architecture in which the glutamate acts as a terminal ligand of the active-site nickel. This observation demonstrates that crystallographically observed glutamate coordination represents a native feature of the enzyme. One of these states is diamagnetic and characterized by a very high stretching frequency of an iron-bound active-site CO ligand. Supported by density-functional-theory calculations, we identify this state as a high-valent species with a biologically unprecedented formal Ni(IV) ground state. Detailed insights into its structure and dynamics were obtained by ultrafast and two-dimensional infrared spectroscopy, demonstrating that it represents a conformationally strained state with unusual bond properties. Our data further show that this state is selectively and reversibly formed under oxic conditions, especially upon rapid exposure to high O2 levels. We conclude that the kinetically controlled formation of this six-coordinate high-valent state represents a specific and precisely orchestrated stereoelectronic response toward O2 that could protect the enzyme from oxidative damage.


Subject(s)
Hydrogenase , Alanine/metabolism , Aspartic Acid/metabolism , Catalytic Domain , Glutamic Acid/metabolism , Glutamine/metabolism , Hydrogenase/chemistry , Hydrogenophilaceae , Iron/chemistry , Ligands , NAD/metabolism , Nickel/chemistry , Oxidation-Reduction , Oxygen/chemistry
2.
Proc Natl Acad Sci U S A ; 113(45): 12815-12819, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791152

ABSTRACT

The ubiquitous opportunistic human pathogen Pseudomonas aeruginosa has five terminal oxidases for aerobic respiration and uses them under different growth conditions. Two of them are cbb3-type cytochrome c oxidases encoded by the gene clusters ccoN1O1Q1P1 and ccoN2O2Q2P2, which are the main terminal oxidases under high- and low-oxygen conditions, respectively. P. aeruginosa also has two orphan gene clusters, ccoN3Q3 and ccoN4Q4, encoding the core catalytic CcoN isosubunits, but the roles of these genes have not been clarified. We found that 16 active cbb3 isoforms could be produced by combinations of four CcoN, two CcoO, and two CcoP isosubunits. The CcoN3- or CcoN4-containing isoforms were produced in the WT cell membrane in response to nitrite and cyanide, respectively. The strains carrying these isoforms were more resistant to nitrite or cyanide under low-oxygen conditions. These results indicate that P. aeruginosa gains resistance to respiratory inhibitors using multiple cbb3 isoforms with different features, which are produced through exchanges of multiple core catalytic isosubunits.

3.
Mol Microbiol ; 106(1): 129-141, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28752517

ABSTRACT

Dissimilatory nitrate reductase (NAR) and assimilatory nitrate reductase (NAS) serve as key enzymes for nitrogen catabolism and anabolism in many organisms. We purified NAR and NAS from H. thermophilus, a hydrogen-oxidizing chemolithoautotroph belonging to the phylogenetically deepest branch in the Bacteria domain. Physiological contribution of these enzymes to nitrate respiration and assimilation was clarified by transcriptomic analysis and gene disruption experiments. These enzymes showed several features unreported in bacteria, such as the periplasmic orientation of NAR anchored with a putative transmembrane subunit and the specific electron transfer from a [4Fe-4S]-type ferredoxin to NAS. While some of their enzymatic properties are shared with NARs from archaea and with NASs from phototrophs, phylogenetic analysis indicated that H. thermophilus NAR and NAS have deep evolutionary origins that cannot be explained by a recent horizontal gene transfer event from archaea and phototrophs. These findings revealed the diversity of NAR and NAS in nonphotosynthetic bacteria, and they also implied that the outward orientation of NAR and the ferredoxin-dependent electron transfer of NAS are evolutionarily ancient features preserved in H. thermophilus.


Subject(s)
Chemoautotrophic Growth/genetics , Nitrate Reductase/metabolism , Archaea/metabolism , Bacteria/genetics , Bacterial Proteins/metabolism , Biological Evolution , Electron Transport , Electrons , Evolution, Molecular , Ferredoxins/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Periplasm/metabolism , Phylogeny
4.
J Bacteriol ; 199(21)2017 11 01.
Article in English | MEDLINE | ID: mdl-28784815

ABSTRACT

Hydrogenobacter thermophilus is an obligate chemolithoautotrophic bacterium of the phylum Aquificae and is capable of fixing carbon dioxide through the reductive tricarboxylic acid (TCA) cycle. The recent discovery of two novel-type phosphoserine phosphatases (PSPs) in H. thermophilus suggests the presence of a phosphorylated serine biosynthesis pathway; however, the physiological role of these novel-type metal-independent PSPs (iPSPs) in H. thermophilus has not been confirmed. In the present study, a mutant strain with a deletion of pspA, the catalytic subunit of iPSPs, was constructed and characterized. The generated mutant was a serine auxotroph, suggesting that the novel-type PSPs and phosphorylated serine synthesis pathway are essential for serine anabolism in H. thermophilus. As an autotrophic medium supplemented with glycine did not support the growth of the mutant, the reversible enzyme serine hydroxymethyltransferase does not appear to synthesize serine from glycine and may therefore generate glycine and 5,10-CH2-tetrahydrofolate (5,10-CH2-THF) from serine. This speculation is supported by the lack of glycine cleavage activity, which is needed to generate 5,10-CH2-THF, in H. thermophilus Determining the mechanism of 5,10-CH2-THF synthesis is important for understanding the fundamental anabolic pathways of organisms, because 5,10-CH2-THF is a major one-carbon donor that is used for the synthesis of various essential compounds, including nucleic and amino acids. The findings from the present experiments using a pspA deletion mutant have confirmed the physiological role of iPSPs as serine producers and show that serine is a major donor of one-carbon units in H. thermophilusIMPORTANCE Serine biosynthesis and catabolism pathways are intimately related to the metabolism of 5,10-CH2-THF, a one-carbon donor that is utilized for the biosynthesis of various essential compounds. For this reason, determining the mechanism of serine synthesis is important for understanding the fundamental anabolic pathways of microorganisms. In the present study, we experimentally confirmed that a novel phosphoserine phosphatase in the obligate chemolithoautotrophic bacterium Hydrogenobacter thermophilus is essential for serine biosynthesis. This finding indicates that serine is synthesized from an intermediate of gluconeogenesis in H. thermophilus In addition, because glycine cleavage system activity and genes encoding an enzyme capable of producing 5,10-CH2-THF were not detected, serine appears to be the major one-carbon donor to tetrahydrofolate (THF) in H. thermophilus.


Subject(s)
Bacteria/enzymology , Bacteria/metabolism , Carbon/metabolism , Phosphoric Monoester Hydrolases/metabolism , Serine/biosynthesis , Bacteria/genetics , Biosynthetic Pathways , Gene Deletion , Phosphoric Monoester Hydrolases/genetics
5.
Photosynth Res ; 134(2): 117-131, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29019085

ABSTRACT

For the first decade following its description in 1954, the Calvin-Benson cycle was considered the sole pathway of autotrophic CO2 assimilation. In the early 1960s, experiments with fermentative bacteria uncovered reactions that challenged this concept. Ferredoxin was found to donate electrons directly for the reductive fixation of CO2 into alpha-keto acids via reactions considered irreversible. Thus, pyruvate and alpha-ketoglutarate could be synthesized from CO2, reduced ferredoxin and acetyl-CoA or succinyl-CoA, respectively. This work opened the door to the discovery that reduced ferredoxin could drive the Krebs citric acid cycle in reverse, converting the pathway from its historical role in carbohydrate breakdown to one fixing CO2. Originally uncovered in photosynthetic green sulfur bacteria, the Arnon-Buchanan cycle has since been divorced from light and shown to function in a variety of anaerobic chemoautotrophs. In this retrospective, colleagues who worked on the cycle at its inception in 1966 and those presently working in the field trace its development from a controversial reception to its present-day inclusion in textbooks. This pathway is now well established in major groups of chemoautotrophic bacteria, instead of the Calvin-Benson cycle, and is increasingly referred to as the Arnon-Buchanan cycle. In this retrospective, separate sections have been written by the authors indicated. Bob Buchanan wrote the abstract and the concluding comments.


Subject(s)
Carbon Dioxide/metabolism , Photosynthesis/physiology , Plants/metabolism , Research/history , Carboxylic Acids , Citric Acid Cycle , Ferredoxins/metabolism , History, 20th Century , History, 21st Century , Oxidation-Reduction
6.
Biosci Biotechnol Biochem ; 80(2): 232-40, 2016.
Article in English | MEDLINE | ID: mdl-26360333

ABSTRACT

Factors that increase protein thermostability are of considerable interest in both scientific and industrial fields. Disulfide bonds are one of such factors that increase thermostability, but are rarely found in intracellular proteins because of the reducing environment of the cytosol. Here, we report the first example of an intermolecular disulfide bond between heteromeric subunits of a novel-type phosphoserine phosphatase from a thermophilic bacterium Hydrogenobacter thermophilus, which contributes to the protein thermostability at the physiological temperature. Comparison of remaining soluble proteins between wild-type and cysteine-deleted mutant using SDS-PAGE revealed that the disulfide bond increases the thermostability of the whole protein by tightly connecting a subunit with low solubility to the partner with higher solubility. Furthermore, it was strongly suggested that the disulfide bond is formed and contributes to the stability in vivo. This finding will open new avenues for the design of proteins with increased thermostability.


Subject(s)
Bacteria/chemistry , Bacterial Proteins/chemistry , Disulfides/chemistry , Phosphoric Monoester Hydrolases/chemistry , Protein Subunits/chemistry , Recombinant Proteins/chemistry , Bacteria/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hot Temperature , Mutation , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Multimerization , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility
7.
J Bacteriol ; 196(24): 4206-15, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25182500

ABSTRACT

The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo(3)-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb(3)-type cytochrome c oxidases (cbb(3)-1and cbb(3)-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb(3)-1 and cbb(3)-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb(3)-1 and cbb(3)-2 are high-affinity enzymes. Although cbb(3)-1 and cbb(3)-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb(3)-1 and cbb(3)-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb(3)-1 and cbb(3)-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa.


Subject(s)
Oxidoreductases/metabolism , Pseudomonas aeruginosa/enzymology , Electron Transport , Gene Expression Profiling , Gene Knockout Techniques , Kinetics , Oxidoreductases/genetics , Oxygen/metabolism , Pseudomonas aeruginosa/genetics
8.
J Biol Chem ; 288(16): 11448-58, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23479726

ABSTRACT

Novel-type serine-synthesizing enzymes, termed metal-independent phosphoserine phosphatases (iPSPs), were recently identified and characterized from Hydrogenobacter thermophilus, a chemolithoautotrophic bacterium belonging to the order Aquificales. iPSPs are cofactor-dependent phosphoglycerate mutase (dPGM)-like phosphatases that have significant amino acid sequence similarity to dPGMs but lack phosphoglycerate mutase activity. Genes coding dPGM-like phosphatases have been identified in a broad range of organisms; however, predicting the function of the corresponding proteins based on sequence information alone is difficult due to their diverse substrate preferences. Here, we determined the crystal structure of iPSP1 from H. thermophilus in the apo-form and in complex with its substrate L-phosphoserine to find structural units important for its phosphatase activity toward L-phosphoserine. Structural and biochemical characterization of iPSP1 revealed that the side chains of His(85) and C-terminal region characteristic of iPSP1 are responsible for the PSP activity. The importance of these structural units for PSP activity was confirmed by high PSP activity observed in two novel dPGM-like proteins from Cyanobacteria and Chloroflexus in which the two structural units were conserved. We anticipate that our present findings will facilitate understanding of the serine biosynthesis pathways of organisms that lack gene(s) encoding conventional PSPs, as the structural information revealed here will help to identify iPSP from sequence databases.


Subject(s)
Bacteria/enzymology , Bacteria/growth & development , Bacterial Proteins/chemistry , Phosphoric Monoester Hydrolases/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Phosphoric Monoester Hydrolases/metabolism , Phosphoserine/chemistry , Phosphoserine/metabolism , Protein Structure, Tertiary
9.
Biosci Biotechnol Biochem ; 78(9): 1619-22, 2014.
Article in English | MEDLINE | ID: mdl-25209512

ABSTRACT

Ferriperoxin is a novel peroxidase essential for aerobiosis of Hydrogenobacter thermophilus. Although the ferriperoxin-deficient mutant (Δfpx) was unable to grow aerobically, a suppressor mutant capable of aerobic growth was obtained after long aerobic cultivation. The alkyl hydroperoxide reductase gene was significantly upregulated in the suppressor mutant, indicating that the enzyme counteracts oxidative stress in the absence of ferriperoxin.


Subject(s)
Bacteria/growth & development , Oxidative Stress , Peroxiredoxins/biosynthesis , Acclimatization , Adaptation, Physiological/genetics , Aerobiosis , Bacteria/enzymology , Gene Expression Regulation, Bacterial , Hydrogen Peroxide
10.
Structure ; 32(6): 679-689.e4, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38492570

ABSTRACT

Group I chaperonins are dual heptamer protein complexes that play significant roles in protein homeostasis. The structure and function of the Escherichia coli chaperonin are well characterized. However, the dynamic properties of chaperonins, such as large ATPase-dependent conformational changes by binding of lid-like co-chaperonin GroES, have made structural analyses challenging, and our understanding of these changes during the turnover of chaperonin complex formation is limited. In this study, we used single-particle cryogenic electron microscopy to investigate the structures of GroES-bound chaperonin complexes from the thermophilic hydrogen-oxidizing bacteria Hydrogenophilus thermoluteolus and Hydrogenobacter thermophilus in the presence of ATP and AMP-PNP. We captured the structure of an intermediate state chaperonin complex, designated as an asymmetric football-shaped complex, and performed analyses to decipher the dynamic structural variations. Our structural analyses of inter- and intra-subunit communications revealed a unique mechanism of complex formation through the binding of a second GroES to a bullet-shaped complex.


Subject(s)
Adenosine Triphosphate , Chaperonin 10 , Cryoelectron Microscopy , Models, Molecular , Protein Binding , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Chaperonin 10/metabolism , Chaperonin 10/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Adenylyl Imidodiphosphate/metabolism , Adenylyl Imidodiphosphate/chemistry , Protein Conformation , Hydrogenophilaceae/metabolism , Hydrogenophilaceae/chemistry , Protein Subunits/metabolism , Protein Subunits/chemistry
11.
J Biol Chem ; 287(15): 11934-41, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22337887

ABSTRACT

Phosphoserine phosphatase (PSP) catalyzes the dephosphorylation of phosphoserine to serine and inorganic phosphate. PSPs, which have been found in all three domains of life, belong to the haloacid dehalogenase-like hydrolase superfamily. However, certain organisms, particularly bacteria, lack a classical PSP gene, although they appear to possess a functional phosphoserine synthetic pathway. The apparent lack of a PSP ortholog in Hydrogenobacter thermophilus, an obligately chemolithoautotrophic and thermophilic bacterium, represented a missing link in serine anabolism because our previous study suggested that serine should be synthesized from phosphoserine. Here, we detected PSP activity in cell-free extracts of H. thermophilus and purified two proteins with PSP activity. Surprisingly, these proteins belonged to the histidine phosphatase superfamily and had been annotated as cofactor-dependent phosphoglycerate mutase (dPGM). However, because they possessed neither mutase activity nor the residues important for the activity, we defined these proteins as novel-type PSPs. Considering the strict substrate specificity toward l-phosphoserine, kinetic parameters, and PSP activity levels in cell-free extracts, these proteins were strongly suggested to function as PSPs in vivo. We also detected PSP activity from "dPGM-like" proteins of Thermus thermophilus and Arabidopsis thaliana, suggesting that PSP activity catalyzed by dPGM-like proteins may be distributed among a broad range of organisms. In fact, a number of bacterial genera, including Firmicutes and Cyanobacteria, were proposed to be strong candidates for possessing this novel type of PSP. These findings will help to identify the missing link in serine anabolism.


Subject(s)
Bacteria, Aerobic/enzymology , Bacterial Proteins/metabolism , Coenzymes/metabolism , Phosphoglycerate Mutase/genetics , Phosphoric Monoester Hydrolases/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Chromatography, Liquid , Enzyme Assays , Kinetics , Molecular Weight , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/isolation & purification , Phylogeny , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Analysis, Protein , Sequence Homology, Amino Acid , Substrate Specificity
12.
Microb Cell Fact ; 12(1): 2, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23305396

ABSTRACT

BACKGROUND: Conversion of industrial processes to more nature-friendly modes is a crucial subject for achieving sustainable development. Utilization of hydrogen-oxidation reactions by hydrogenase as a driving force of bioprocess reaction can be an environmentally ideal method because the reaction creates no pollutants. We expressed NAD-dependent alcohol dehydrogenase from Kluyveromyces lactis in a hydrogen-oxidizing bacterium: Ralstonia eutropha. This is the first report of hydrogen-driven in vivo coupling reaction of the alcohol dehydrogenase and indigenous soluble NAD-reducing hydrogenase. Asymmetric reduction of hydroxyacetone to (R)-1,2-propanediol, which is a commercial building block for antibacterial agents, was performed using the transformant as the microbial cell catalyst. RESULTS: The two enzymes coupled in vitro in vials without a marked decrease of reactivity during the 20 hr reaction because of the hydrogenase reaction, which generates no by-product that affects enzymes. Alcohol dehydrogenase was expressed functionally in R. eutropha in an activity level equivalent to that of indigenous NAD-reducing hydrogenase under the hydrogenase promoter. The hydrogen-driven in vivo coupling reaction proceeded only by the transformant cell without exogenous addition of a cofactor. The decrease of reaction velocity at higher concentration of hydroxyacetone was markedly reduced by application of an in vivo coupling system. Production of (R)-1,2-propanediol (99.8% e.e.) reached 67.7 g/l in 76 hr with almost a constant rate using a jar fermenter. The reaction velocity under 10% PH2 was almost equivalent to that under 100% hydrogen, indicating the availability of crude hydrogen gas from various sources. The in vivo coupling system enabled cell-recycling as catalysts. CONCLUSIONS: Asymmetric reduction of hydroxyacetone by a coupling reaction of the two enzymes continued in both in vitro and in vivo systems in the presence of hydrogen. The in vivo reaction system using R. eutropha transformant expressing heterologous alcohol dehydrogenase showed advantages for practical usage relative to the in vitro coupling system. The results suggest a hopeful perspective of the hydrogen-driven bioprocess as an environmentally outstanding method to achieve industrial green innovation. Hydrogen-oxidizing bacteria can be useful hosts for the development of hydrogen-driven microbial cell factories.


Subject(s)
Acetone/analogs & derivatives , Alcohol Dehydrogenase/metabolism , Bacterial Proteins/metabolism , Cupriavidus necator/enzymology , Kluyveromyces/metabolism , Propylene Glycol/metabolism , Acetone/chemistry , Acetone/metabolism , Alcohol Dehydrogenase/genetics , Bacterial Proteins/genetics , Batch Cell Culture Techniques , Biocatalysis , Hydrogen/chemistry , Oxidation-Reduction , Propylene Glycol/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Stereoisomerism
13.
Front Bioeng Biotechnol ; 11: 1296216, 2023.
Article in English | MEDLINE | ID: mdl-38026874

ABSTRACT

Microalgae have emerged as a promising, next-generation sustainable resource with versatile applications, particularly as expression platforms and green cell factories. They possess the ability to overcome the limitations of terrestrial plants, such non-arable land, water scarcity, time-intensive growth, and seasonal changes. However, the heterologous expression of interested genes in microalgae under heterotrophic cultivation (dark mode) remains a niche area within the field of engineering technologies. In this study, the green microalga, Chlorella sorokiniana AARL G015 was chosen as a potential candidate due to its remarkable capacity for rapid growth in complete darkness, its ability to utilize diverse carbon sources, and its potential for wastewater treatment in a circular bioeconomy model. The aims of this study were to advance microalgal genetic engineering via dark cultivation, thereby positioning the strain as promising dark-host for expressing heterologous genes to produce high-value phytochemicals and ingredients for food and feed. To facilitate comprehensive screening based on resistance, eleven common antibiotics were tested under heterotrophic condition. As the most effective selectable markers for this strain, G418, hygromycin, and streptomycin exhibited growth inhibition rates of 98%, 93%, and 92%, respectively, ensuring robust long-term transgenic growth. Successful transformation was achieved through microalgal cell cocultivation with Agrobacterium under complete darkness verified through the expression of green fluorescence protein and ß-glucuronidase. In summary, this study pioneers an alternative dark-host microalgal platform, using, Chlorella, under dark mode, presenting an easy protocol for heterologous gene transformation for microalgal host, devoid of the need for expensive equipment and light for industrial production. Furthermore, the developed genetic transformation methodology presents a sustainable way for production of high-value nutrients, dietary supplements, nutraceuticals, proteins and pharmaceuticals using heterotrophic microalgae as an innovative host system.

14.
Article in English | MEDLINE | ID: mdl-22869120

ABSTRACT

Two novel-type phosphoserine phosphatases (PSPs) with unique substrate specificity from the thermophilic and hydrogen-oxidizing bacterium Hydrogenobacter thermophilus TK-6 have previously been identified. Here, one of the PSPs (iPSP1) was heterologously expressed in Escherichia coli, purified and crystallized. Diffraction-quality crystals were obtained by the sitting-drop vapour-diffusion method using PEG 4000 as the precipitant. Two diffraction data sets with resolution ranges of 45.0-2.50 and 45.0-1.50 Šwere collected from a single crystal and were merged to give a highly complete data set. The space group of the crystal was identified as primitive orthorhombic P2(1)2(1)2(1), with unit-cell parameters a = 49.8, b = 73.6, c = 124.3 Å. The calculated Matthews coefficient (V(M) = 2.32 Å(3) Da(-1)) indicated that the crystal contained one iPSP1 complex per asymmetric unit.


Subject(s)
Bacteria/enzymology , Phosphoric Monoester Hydrolases/chemistry , Crystallization , Crystallography, X-Ray
15.
Biosci Biotechnol Biochem ; 76(10): 1984-6, 2012.
Article in English | MEDLINE | ID: mdl-23047089

ABSTRACT

A cytochrome bc-type complex of Roseobacter denitrificans OCh114 was thought to be a novel cytochrome c oxidase. To determine its function, we deleted the genes encoding the complex. The mutant grew normally by aerobic respiration, but failed to grow by denitrification and lacked nitric oxide reductase activity, indicating that the physiological function of the gene product is nitric oxide reduction.


Subject(s)
Oxidoreductases/genetics , Photosynthesis , Roseobacter/genetics , Roseobacter/metabolism , Aerobiosis , Electron Transport Complex IV/genetics , Gene Knockout Techniques , Nitrification/genetics , Oxidoreductases/deficiency , Roseobacter/enzymology , Roseobacter/growth & development
16.
Biosci Biotechnol Biochem ; 76(9): 1677-81, 2012.
Article in English | MEDLINE | ID: mdl-22972329

ABSTRACT

Hydrogenobacter thermophilus is a chemolithoautotroph that utilizes not only hydrogen (H(2)) but also thiosulfate as sole source of energy and assimilates carbon dioxide via the reductive tricarboxylic acid (RTCA) cycle. We systematically carried out transcriptome analysis of metabolic enzymes in both H(2)- and thiosulfate-grown H. thermophilus cells. The analysis indicated that the expression of hydrogenase genes is repressed under thiosulfate oxidation conditions as compared with H(2) oxidation conditions. This was confirmed by enzyme assay. In contrast, some genes for sulfur metabolism, including sox genes, showed almost the same expression levels under both conditions. In addition, the genes for the RTCA cycle showed high expression levels under both conditions. It was suggested that sulfur metabolism and the RTCA cycle function as forms of basal metabolism, and H(2) oxidation is inducible. Switching of H(2) oxidation can be advantageous for the lifestyle of this bacterium in nature.


Subject(s)
Bacteria/genetics , Gene Expression Regulation, Bacterial , Hydrogen/metabolism , Hydrogenase/metabolism , Thiosulfates/metabolism , Transcriptome , Bacteria/enzymology , Carbon Dioxide/metabolism , Citric Acid Cycle/physiology , Gene Expression Profiling , Hot Springs/microbiology , Hot Temperature , Oxidation-Reduction
17.
J Biosci Bioeng ; 134(6): 496-500, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36182634

ABSTRACT

The obligate chemolithoautotrophic bacterium, Hydrogenovibrio marinus MH-110, has three ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) isoenzymes, CbbM, CbbLS-1, and CbbLS-2, which differ in CO2/O2 specificity factor values. Expressions of CbbM and CbbLS-1 are regulated differently by transcriptional regulators of the LysR family, CbbRm and CbbR1, respectively. CbbLS-2 has the highest specificity and is induced under low CO2 conditions, but the regulator for the cbbL2S2 genes encoding CbbLS-2 remains unidentified. In this study, the cbbR2 gene encoding the third CbbR-type regulator was identified in the downstream region of the cbbL2S2 and carboxysome gene cluster via transposon mutagenesis. CO2 depletion induced the cbbR2 gene. The cbbR2 knockout mutant could not grow under low CO2 conditions and did not produce CbbLS-2. Recombinant CbbR2 protein was bound to the promoter region of the cbbL2S2 genes. These results indicate that CbbR2 is the specific regulator for CbbLS-2 expression.


Subject(s)
Hydrogen , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/genetics , Carbon Dioxide
18.
Microbiology (Reading) ; 157(Pt 3): 899-910, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21081762

ABSTRACT

The draft genome sequence of Acetobacter aceti NBRC 14818 was determined by whole-genome shotgun sequencing and the transcriptome profile in cells exponentially grown on ethanol, acetate or glucose was analysed by using a DNA microarray. The genes for all enzymes that constitute the complete tricarboxylic acid (TCA) cycle and glyoxylate pathway were identified in the genome. The TCA cycle genes showed higher expression levels in A. aceti cells grown on acetate or glucose and the glyoxylate pathway genes were significantly induced by ethanol or acetate. Many SOS-response genes were upregulated in cells grown on ethanol, indicating that ethanol provoked damage of DNA and proteins. The superoxide dismutase and catalase genes showed high expression levels in culture on glucose, indicating that oxidation of glucose induced oxidative stress. A. aceti NBRC 14818 was found to have a highly branched respiratory chain. The genes for two type I and one type II NADH dehydrogenase were identified. The genes for one of the type I enzymes were highly expressed when cells were grown on acetate or glucose, but were significantly downregulated in culture on ethanol, probably because ubiquinones were directly reduced by pyrroloquinoline quinone-dependent alcohol dehydrogenase. Four sets of the genes for quinol oxidases, one bo(3)-type (BO3), one bd-type and two cyanide-insensitive-types (CIOs), were identified in the genome. The genes for BO3, which might have proton-pumping activity, were highly expressed under the conditions tested, but were downregulated in the glucose culture. In contrast, the genes for one of the CIOs were significantly upregulated in cells grown on glucose. The two CIOs, which are expected to have lower energy-coupling efficiency, seemed to have a higher contribution in glucose-grown cells. These results indicate that energy conservation efficiency is fine-tuned by changing the respiratory components according to the growth conditions in A. aceti cells.


Subject(s)
Acetobacter/growth & development , Bacterial Proteins/metabolism , Carbon/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Acetates/metabolism , Acetobacter/classification , Acetobacter/genetics , Acetobacter/metabolism , Bacterial Proteins/genetics , Carbon/chemistry , Citric Acid Cycle , Ethanol/metabolism , Glucose/metabolism , Glyoxylates/metabolism , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Sequence Analysis, DNA
19.
Microbiology (Reading) ; 157(Pt 7): 1980-1989, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21474532

ABSTRACT

Syntrophic oxidation of acetate, so-called reversed reductive acetogenesis, is one of the most important degradation steps in anaerobic digesters. However, little is known about the genetic diversity of the micro-organisms involved. Here we investigated the activity and composition of potentially acetate-oxidizing syntrophs using a combinatorial approach of flux measurement and transcriptional profiling of the formyltetrahydrofolate synthetase (FTHFS) gene, an ecological biomarker for reductive acetogenesis. During the operation of a thermophilic anaerobic digester, volatile fatty acids were mostly depleted, suggesting a high turnover rate for dissolved H(2), and hydrogenotrophic methanogens were the dominant archaeal members. Batch cultivation of the digester microbiota with (13)C-labelled acetate indicated that syntrophic oxidation accounted for 13.1-21.3 % of methane production from acetate. FTHFS genes were transcribed in the absence of carbon monoxide, methoxylated compounds and inorganic electron acceptors other than CO(2), which is implicated in the activity of reversed reductive acetogenesis; however, expression itself does not distinguish whether biosynthesis or biodegradation is functioning. The mRNA- and DNA-based terminal RFLP and clone library analyses indicated that, out of nine FTHFS phylotypes detected, the FTHFS genes from the novel phylotypes I-IV in addition to the known syntroph Thermacetogenium phaeum (i.e. phylotype V) were specifically expressed. These transcripts arose from phylogenetically presumed homoacetogens. The results of this study demonstrate that hitherto unidentified phylotypes of homoacetogens are responsible for syntrophic acetate oxidation in an anaerobic digester.


Subject(s)
Acetates/metabolism , Archaea/metabolism , Bacteria, Anaerobic/metabolism , Formate-Tetrahydrofolate Ligase/genetics , Acetates/chemistry , Anaerobiosis , Archaea/enzymology , Archaea/genetics , Bacteria, Anaerobic/enzymology , Bacteria, Anaerobic/genetics , Base Sequence , Carbon Monoxide , DNA Fingerprinting , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fatty Acids, Volatile/metabolism , Formate-Tetrahydrofolate Ligase/biosynthesis , Formate-Tetrahydrofolate Ligase/metabolism , Gene Expression Profiling , Hydrogen , Methane/biosynthesis , Molecular Sequence Data , Oxidation-Reduction , Polymerase Chain Reaction , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Thermoanaerobacter/genetics , Thermoanaerobacter/metabolism
20.
Microb Ecol ; 61(3): 595-605, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21240482

ABSTRACT

Acidification is one of the most common and serious problems inducing process failure in anaerobic digesters. The production of volatile fatty acids (VFAs) mainly triggers acidic shock. However, little is known about the bacteria involved in the processes of acidogenic metabolism, such as fermentation and reductive acetogenesis. Here, the metabolic responses of a methanogenic community to the acidification and resulting process deterioration were investigated using transcriptional profiling of both the 16S rRNA and formyltetrahydrofolate synthetase (FTHFS) genes. The 16S rRNA-based analyses demonstrated that the dynamic shift of bacterial populations was closely correlated with reactor performance, especially with VFA accumulation levels. The pH drop accompanied by an increase in VFAs stimulated the metabolic activation of an uncultured Chloroflexi subphylum I bacterium. The subphylum has been characterized as a fermentative carbohydrate degrader using culture- and molecular-based ecophysiological assays. At the beginning of VFA accumulation, FTHFS genes were expressed; the transcripts were derived from phylogenetically predicted homoacetogens, suggesting that reductive acetogenesis was operated by hitherto unidentified bacteria. When acetate concentrations were high, the FTHFS expression ceased and Thermoanaerobacterium aciditolerans proliferated selectively. This thermoacidophilic bacterium would play a decisive role in acetate production via fermentative metabolism. The results of this study reveal for the first time that an uncultured Chloroflexi, T. aciditolerans, and novel homoacetogens were metabolically associated with acidic shock and subsequent VFA accumulation in an anaerobic digester.


Subject(s)
Acids/metabolism , Bioreactors/microbiology , Chloroflexi/metabolism , Fatty Acids, Volatile/biosynthesis , Anaerobiosis , Chloroflexi/genetics , DNA, Bacterial/genetics , Formate-Tetrahydrofolate Ligase/genetics , Gene Expression Profiling , Gene Library , Genes, Bacterial , Hydrogen-Ion Concentration , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL