Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Mol Cell Proteomics ; 22(12): 100677, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949301

ABSTRACT

Proteins can be modified by lipids in various ways, for example, by myristoylation, palmitoylation, farnesylation, and geranylgeranylation-these processes are collectively referred to as lipidation. Current chemical proteomics using alkyne lipids has enabled the identification of lipidated protein candidates but does not identify endogenous lipidation sites and is not readily applicable to in vivo systems. Here, we introduce a proteomic methodology for global analysis of endogenous protein N-terminal myristoylation sites that combines liquid-liquid extraction of hydrophobic lipidated peptides with liquid chromatography-tandem mass spectrometry using a gradient program of acetonitrile in the high concentration range. We applied this method to explore myristoylation sites in HeLa cells and identified a total of 75 protein N-terminal myristoylation sites, which is more than the number of high-confidence myristoylated proteins identified by myristic acid analog-based chemical proteomics. Isolation of myristoylated peptides from HeLa digests prepared with different proteases enabled the identification of different myristoylated sites, extending the coverage of N-myristoylome. Finally, we analyzed in vivo myristoylation sites in mouse tissues and found that the lipidation profile is tissue-specific. This simple method (not requiring chemical labeling or affinity purification) should be a promising tool for global profiling of protein N-terminal myristoylation.


Subject(s)
Proteins , Proteomics , Humans , Animals , Mice , Myristic Acid/chemistry , Myristic Acid/metabolism , HeLa Cells , Proteins/metabolism , Peptides/metabolism , Liquid-Liquid Extraction , Protein Processing, Post-Translational
2.
FASEB J ; 37(9): e23151, 2023 09.
Article in English | MEDLINE | ID: mdl-37585289

ABSTRACT

Docosahexaenoic acid (DHA) and ultra-long-chain polyunsaturated fatty acids (ULC-PUFAs) are uniquely enriched in membrane phospholipids of retinal photoreceptors. Several studies have shown that di-DHA- and ULC-PUFA-containing phospholipids in photoreceptors have an important role in maintaining normal visual function; however, the molecular mechanisms underlying the synthesis and enrichment of these unique lipids in the retina, and their specific roles in retinal function remain unclear. Long-chain acyl-coenzyme A (CoA) synthetase 6 (ACSL6) preferentially converts DHA into DHA-CoA, which is a substrate during DHA-containing lipid biosynthesis. Here, we report that Acsl6 mRNA is expressed in the inner segment of photoreceptor cells and the retinal pigment epithelial cells, and genetic deletion of ACSL6 resulted in the selective depletion of di-DHA- and ULC-PUFA-containing phospholipids, but not mono-DHA-containing phospholipids in the retina. MALDI mass spectrometry imaging (MALDI-MSI) revealed the selective distribution of di-DHA- and ULC-PUFA-containing phospholipids in the photoreceptor outer segment (OS). Electroretinogram of Acsl6-/- mice exhibited photoreceptor cell-derived visual impairment, whereas the expression levels and localization of opsin proteins were unchanged. Acsl6-/- mice exhibited an age-dependent progressive decrease of the thickness of the outer nuclear layers, whereas the inner nuclear layers and OSs were normal. These results demonstrate that ACSL6 facilitates the local enrichment of di-DHA- and ULC-PUFA-containing phospholipids in the retina, which supports normal visual function and retinal homeostasis.


Subject(s)
Docosahexaenoic Acids , Phospholipids , Mice , Animals , Phospholipids/metabolism , Docosahexaenoic Acids/metabolism , Retina/metabolism , Fatty Acids, Unsaturated/metabolism , Ligases/analysis , Ligases/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism
3.
Chembiochem ; 24(14): e202300111, 2023 07 17.
Article in English | MEDLINE | ID: mdl-36964942

ABSTRACT

Chlorinated gymnastatin and dankastatin alkaloids derived from the fungal strain Gymnascella dankaliensis have been reported to possess significant anticancer activity but their mode of action is unknown. These members possess electrophilic functional groups that can might undergo covalent bond formation with specific proteins to exert their biological activity. To better understand the mechanism of action of this class of natural products, we mapped the proteome-wide cysteine reactivity of the most potent of these alkaloids, dankastatin B, by using activity-based protein profiling chemoproteomic approaches. We identified a primary target of dankastatin B in breast cancer cells as cysteine C65 of the voltage-dependent anion-selective channel on the outer mitochondrial membrane VDAC3. We demonstrated direct and covalent interaction of dankastatin B with VDAC3. VDAC3 knockdown conferred hypersensitivity to dankastatin B-mediated antiproliferative effects in breast cancer cells, thus indicating that VDAC3 was at least partially involved in the anticancer effects of this natural product. Our study reveals a potential mode of action of dankastatin B through covalent targeting of VDAC3 and highlights the utility of chemoproteomic approaches in gaining mechanistic understanding of electrophilic natural products.


Subject(s)
Biological Products , Breast Neoplasms , Humans , Female , Cysteine/chemistry , Biological Products/chemistry , Mitochondria/metabolism , Breast Neoplasms/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Voltage-Dependent Anion Channels/metabolism
4.
FASEB J ; 36(12): e22648, 2022 12.
Article in English | MEDLINE | ID: mdl-36374250

ABSTRACT

Cyp4f18 catalyzes the conversion of n-3 polyunsaturated fatty acids (PUFAs) into omega-3 epoxides, such as 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) and 19,20-epoxydocosapentaenoic acid (19,20-EpDPE) from eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), respectively. Cyp4f18-deficient mice spontaneously develop psoriasis-like dermatitis. A significant increase in the number of IL-17A-positive gamma delta (γδ) T cells in the skin and enlargement of draining lymph nodes was observed. These symptoms were drastically suppressed by antibiotic treatment. Cyp4f18 is highly expressed in dendritic cells (DCs), and Cyp4f18-deficient bone marrow-derived dendritic cells (BMDCs) show markedly increased expression levels of cytokines such as IL-23 and IL-1ß in response to lipopolysaccharide (LPS) stimulation. Lipidomic analysis of lymph nodes and BMDCs revealed a significant decrease in a series of omega-3 epoxidized metabolites. Among them, 17,18-dihydroxyeicosatetraenoic acid (17,18-diHETE), a vicinal diol derived from EPA omega-3 epoxidation suppressed IL-23 production in LPS-stimulated BMDCs in Cyp4f18-deficient mice. These results demonstrate that Cyp4f18 endogenously produces omega-3-epoxidized metabolites in the draining lymph nodes, and these metabolites contribute to skin homeostasis by suppressing the excessive activation of the IL-23/IL-17 axis initiated by DCs.


Subject(s)
Cytochrome P450 Family 4 , Dermatitis , Fatty Acids, Omega-3 , Psoriasis , Animals , Mice , Dermatitis/genetics , Dermatitis/metabolism , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Fatty Acids, Omega-3/metabolism , Interleukin-23 , Lipopolysaccharides/toxicity , Psoriasis/genetics , Psoriasis/metabolism , Cytochrome P450 Family 4/genetics
5.
Nat Chem Biol ; 16(11): 1189-1198, 2020 11.
Article in English | MEDLINE | ID: mdl-32572277

ABSTRACT

Molecular glues are an intriguing therapeutic modality that harness small molecules to induce interactions between proteins that typically do not interact. However, such molecules are rare and have been discovered fortuitously, thus limiting their potential as a general strategy for therapeutic intervention. We postulated that natural products bearing one or more electrophilic sites may be an unexplored source of new molecular glues, potentially acting through multicovalent attachment. Using chemoproteomic platforms, we show that members of the manumycin family of polyketides, which bear multiple potentially reactive sites, target C374 of the putative E3 ligase UBR7 in breast cancer cells, and engage in molecular glue interactions with the neosubstrate tumor-suppressor TP53, leading to p53 transcriptional activation and cell death. Our results reveal an anticancer mechanism of this natural product family, and highlight the potential for combining chemoproteomics and multicovalent natural products for the discovery of new molecular glues.


Subject(s)
Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Polyenes/chemistry , Polyketides/chemistry , Polyunsaturated Alkamides/chemistry , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cross-Linking Reagents/chemistry , Drug Discovery , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Molecular Conformation , Molecular Structure , Polyenes/pharmacology , Polyunsaturated Alkamides/pharmacology , Static Electricity , Structure-Activity Relationship , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics
6.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555105

ABSTRACT

Metabolic syndrome is associated with the development of chronic kidney disease (CKD). We previously demonstrated that aged kidneys are prone to developing tertiary lymphoid tissues (TLTs) and sustain inflammation after injury, leading to CKD progression; however, the relationship between renal TLT and metabolic syndrome is unknown. In this study, we demonstrated that a high-fat diet (HFD) promoted renal TLT formation and inflammation via sterol O-acyltransferase (SOAT) 1-dependent mechanism. Mice fed a HFD prior to ischemic reperfusion injury (IRI) exhibited pronounced renal TLT formation and sustained inflammation compared to the controls. Untargeted lipidomics revealed the increased levels of cholesteryl esters (CEs) in aged kidneys with TLT formation after IRI, and, consistently, the Soat1 gene expression increased. Treatment with avasimibe, a SOAT inhibitor, attenuated TLT maturation and renal inflammation in HFD-fed mice subjected to IRI. Our findings suggest the importance of SOAT1-dependent CE accumulation in the pathophysiology of CKDs associated with TLT.


Subject(s)
Metabolic Diseases , Metabolic Syndrome , Renal Insufficiency, Chronic , Reperfusion Injury , Animals , Mice , Metabolic Syndrome/metabolism , Diet, High-Fat/adverse effects , Sterol O-Acyltransferase/genetics , Sterol O-Acyltransferase/metabolism , Kidney/metabolism , Lymphoid Tissue/metabolism , Inflammation/metabolism , Fibrosis , Renal Insufficiency, Chronic/metabolism , Metabolic Diseases/metabolism , Reperfusion Injury/metabolism , Mice, Inbred C57BL
7.
FASEB J ; 34(9): 12492-12501, 2020 09.
Article in English | MEDLINE | ID: mdl-32721046

ABSTRACT

Lipid mediators play important roles in regulating inflammatory responses and tissue homeostasis. Since 12/15-lipoxygenase (12/15-LOX)-derived lipid mediators such as lipoxin A4 (LXA4 ) and protectin D1 (PD1) protect against corneal epithelial cell damage, the major cell types that express 12/15-LOX and contribute to the corneal wound healing process are of particular interest. Here, we found that eosinophils were the major cell type expressing 12/15-LOX during the corneal wound healing process. Eosinophils were recruited into the conjunctiva after corneal epithelium wounding, and eosinophil-deficient and/or eosinophil-specific 12/15-LOX knockout mice showed delayed corneal wound healing compared with wild-type mice. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based mediator lipidomics revealed that a series of 12/15-LOX-derived mediators were significantly decreased in eosinophil-deficient mice and topical application of 17-hydroxydocosahexaenoic acid (17-HDoHE), a major 12/15-LOX-derived product, restored the phenotype. These results indicate that 12/15-LOX-expressing eosinophils, by locally producing pro-resolving mediators, significantly contribute to the corneal wound healing process in the eye.


Subject(s)
Arachidonate 12-Lipoxygenase/physiology , Arachidonate 15-Lipoxygenase/physiology , Corneal Injuries/pathology , Eosinophils/cytology , Wound Healing , Animals , Cornea/pathology , Eosinophils/enzymology , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
Proc Natl Acad Sci U S A ; 115(15): 3936-3941, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29581279

ABSTRACT

Bietti's crystalline dystrophy (BCD) is an intractable and progressive chorioretinal degenerative disease caused by mutations in the CYP4V2 gene, resulting in blindness in most patients. Although we and others have shown that retinal pigment epithelium (RPE) cells are primarily impaired in patients with BCD, the underlying mechanisms of RPE cell damage are still unclear because we lack access to appropriate disease models and to lesion-affected cells from patients with BCD. Here, we generated human RPE cells from induced pluripotent stem cells (iPSCs) derived from patients with BCD carrying a CYP4V2 mutation and successfully established an in vitro model of BCD, i.e., BCD patient-specific iPSC-RPE cells. In this model, RPE cells showed degenerative changes of vacuolated cytoplasm similar to those in postmortem specimens from patients with BCD. BCD iPSC-RPE cells exhibited lysosomal dysfunction and impairment of autophagy flux, followed by cell death. Lipidomic analyses revealed the accumulation of glucosylceramide and free cholesterol in BCD-affected cells. Notably, we found that reducing free cholesterol by cyclodextrins or δ-tocopherol in RPE cells rescued BCD phenotypes, whereas glucosylceramide reduction did not affect the BCD phenotype. Our data provide evidence that reducing intracellular free cholesterol may have therapeutic efficacy in patients with BCD.


Subject(s)
Cholesterol/metabolism , Corneal Dystrophies, Hereditary/metabolism , Retinal Diseases/metabolism , Animals , Cholesterol/analysis , Corneal Dystrophies, Hereditary/diet therapy , Corneal Dystrophies, Hereditary/enzymology , Corneal Dystrophies, Hereditary/genetics , Cytochrome P450 Family 4/genetics , Cytochrome P450 Family 4/metabolism , Humans , Mice , Mutation , Phenotype , Retinal Diseases/diet therapy , Retinal Diseases/enzymology , Retinal Diseases/genetics , Retinal Pigment Epithelium/enzymology , Retinal Pigment Epithelium/metabolism
9.
J Allergy Clin Immunol ; 142(2): 470-484.e12, 2018 08.
Article in English | MEDLINE | ID: mdl-29288079

ABSTRACT

BACKGROUND: Metabolites of eicosapentaenoic acid exert various physiologic actions. 17,18-Epoxyeicosatetraenoic acid (17,18-EpETE) is a recently identified new class of antiallergic and anti-inflammatory lipid metabolite of eicosapentaenoic acid, but its effects on skin inflammation and the underlying mechanisms remain to be investigated. OBJECTIVE: We evaluated the effectiveness of 17,18-EpETE for control of contact hypersensitivity in mice and cynomolgus macaques. We further sought to reveal underlying mechanisms by identifying the responsible receptor and cellular target of 17,18-EpETE. METHODS: Contact hypersensitivity was induced by topical application of 2,4-dinitrofluorobenzene. Skin inflammation and immune cell populations were analyzed by using flow cytometric, immunohistologic, and quantitative RT-PCR analyses. Neutrophil mobility was examined by means of imaging analysis in vivo and neutrophil culture in vitro. The receptor for 17,18-EpETE was identified by using the TGF-α shedding assay, and the receptor's involvement in the anti-inflammatory effects of 17,18-EpETE was examined by using KO mice and specific inhibitor treatment. RESULTS: We found that preventive or therapeutic treatment with 17,18-EpETE ameliorated contact hypersensitivity by inhibiting neutrophil mobility in mice and cynomolgus macaques. 17,18-EpETE was recognized by G protein-coupled receptor (GPR) 40 (also known as free fatty acid receptor 1) and inhibited chemoattractant-induced Rac activation and pseudopod formation in neutrophils. Indeed, the antiallergic inflammatory effect of 17,18-EpETE was abolished in the absence or inhibition of GPR40. CONCLUSION: 17,18-EpETE inhibits neutrophil mobility through GPR40 activation, which is a potential therapeutic target to control allergic inflammatory diseases.


Subject(s)
Anti-Allergic Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Arachidonic Acids/metabolism , Dermatitis, Contact/drug therapy , Neutrophils/drug effects , Receptors, G-Protein-Coupled/metabolism , Animals , Anti-Allergic Agents/pharmacology , Arachidonic Acids/pharmacology , Arachidonic Acids/therapeutic use , Cell Movement , Cells, Cultured , Female , Macaca fascicularis , Mice , Mice, Inbred C57BL , Mice, Knockout , Pseudopodia/pathology , Receptors, G-Protein-Coupled/genetics , Signal Transduction , rac GTP-Binding Proteins/metabolism
10.
J Lipid Res ; 58(11): 2229-2237, 2017 11.
Article in English | MEDLINE | ID: mdl-28874441

ABSTRACT

Oxidized phospholipids (OxPLs) are widely held to be associated with various diseases, such as arteriosclerosis, diabetes, and cancer. To characterize the structure-specific behavior of OxPLs and their physiological relevance, we developed a comprehensive analytical method by establishing a measured MS/MS spectra library of OxPLs. Biogenic OxPLs were prepared by the addition of specific oxidized fatty acids to cultured cells, where they were incorporated into cellular phospholipids, and untargeted lipidomics by LC-quadrupole/TOF-MS was applied to collect MS/MS spectra for the OxPLs. Based on the measured MS/MS spectra for about 400 molecular species of the biogenic OxPLs, we developed a broad-targeted lipidomics system using triple quadrupole MS. Separation precision of structural isomers was optimized by multiple reaction monitoring analysis and this system enabled us to detect OxPLs at levels as low as 10 fmol. When applied to biological samples, i.e., mouse peritoneal macrophages, this system enabled us to monitor a series of OxPLs endogenously produced in a 12/15-lipoxygenase-dependent manner. This advanced analytical method will be useful to elucidate the structure-specific behavior of OxPLs and their physiological relevance in vivo.


Subject(s)
Phospholipids/chemistry , Phospholipids/metabolism , Tandem Mass Spectrometry , Animals , Limit of Detection , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction
11.
Proc Natl Acad Sci U S A ; 110(44): 17808-13, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24127592

ABSTRACT

In the representative gut bacterium Lactobacillus plantarum, we identified genes encoding the enzymes involved in a saturation metabolism of polyunsaturated fatty acids and revealed in detail the metabolic pathway that generates hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and partially saturated trans-fatty acids as intermediates. Furthermore, we observed these intermediates, especially hydroxy fatty acids, in host organs. Levels of hydroxy fatty acids were much higher in specific pathogen-free mice than in germ-free mice, indicating that these fatty acids are generated through polyunsaturated fatty acids metabolism of gastrointestinal microorganisms. These findings suggested that lipid metabolism by gastrointestinal microbes affects the health of the host by modifying fatty acid composition.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Gastrointestinal Tract/microbiology , Lactobacillus plantarum/enzymology , Lipid Metabolism/physiology , Metabolic Networks and Pathways/physiology , Amino Acid Sequence , Animals , Base Sequence , Chromatography, Liquid , Cloning, Molecular , DNA Primers/genetics , Gastrointestinal Tract/metabolism , Lactobacillus plantarum/metabolism , Metabolic Networks and Pathways/genetics , Mice , Molecular Sequence Data , Multigene Family/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Sequence Analysis, DNA , Sequence Homology , Specific Pathogen-Free Organisms , Tandem Mass Spectrometry
12.
FASEB J ; 28(9): 4036-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24891522

ABSTRACT

Resolution of inflammation is critical to restoration of tissue function after an inflammatory response. We previously demonstrated that 12/15-lipoxygenase (12/15-LOX)-expressing eosinophils contribute to this process in murine zymosan-induced peritonitis. In this study, eosinophils promoted resolution by regulating expression of macrophage CXCL13. Microarray analysis revealed that eosinophils significantly increased (∼3-fold) the expression of macrophage CXCL13 by a 12/15-LOX-dependent mechanism. CXCL13 depletion caused a resolution defect, with the reduced appearance of phagocytes carrying engulfed zymosan in the draining lymph nodes. Inflamed lymph node hypertrophy, a critical feature of the resolution process, was reduced by ∼60% in eosinophil-deficient mice, and adoptive transfer of eosinophils or administration of CXCL13 corrected this defect. Administration of the 12/15-LOX-derived mediator lipoxin A4 (LXA4) increased the expression of CXCL13 and restored the defect of lymph node hypertrophy in eosinophil-deficient mice. These results demonstrate that eosinophils control the resolution of inflammation and draining lymph node hypertrophy through proresolving lipid mediators and the CXCL13 pathway in mice.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Chemokine CXCL13/metabolism , Eosinophils/cytology , Inflammation/pathology , Lymph Nodes/pathology , Macrophages, Peritoneal/pathology , Peritonitis/pathology , Animals , Cells, Cultured , Eosinophils/metabolism , Flow Cytometry , Hypertrophy , Inflammation/metabolism , Lipoxins/metabolism , Lymph Nodes/metabolism , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microarray Analysis , Peritonitis/metabolism
13.
FASEB J ; 28(2): 586-93, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24128889

ABSTRACT

Eicosapentaenoic acid (EPA) has beneficial effects in many inflammatory disorders. In this study, dietary EPA was converted to 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) by ω-3 epoxygenation in the mouse peritoneal cavity. Mediator lipidomics revealed a series of novel oxygenated metabolites of 17,18-EpETE, and one of the major metabolites, 12-hydroxy-17,18-epoxyeicosatetraenoic acid (12-OH-17,18-EpETE), displayed a potent anti-inflammatory action by limiting neutrophil infiltration in murine zymosan-induced peritonitis. 12-OH-17,18-EpETE inhibited leukotriene B4-induced neutrophil chemotaxis and polarization in vitro in a low nanomolar range (EC50 0.6 nM). The complete structures of two natural isomers were assigned as 12S-OH-17R,18S-EpETE and 12S-OH-17S,18R-EpETE, using chemically synthesized stereoisomers. These natural isomers displayed potent anti-inflammatory action, whereas the unnatural stereoisomers were essentially devoid of activity. These results demonstrate that 17,18-EpETE derived from dietary EPA is converted to a potent bioactive metabolite 12-OH-17,18-EpETE, which may generate an endogenous anti-inflammatory metabolic pathway.


Subject(s)
Arachidonic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Animals , Arachidonic Acids/chemistry , Cells, Cultured , Eicosapentaenoic Acid/chemistry , Male , Mice , Mice, Inbred C57BL , Peritonitis/chemically induced , Peritonitis/metabolism , Zymosan/toxicity
14.
J Org Chem ; 80(15): 7713-26, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26172872

ABSTRACT

A novel anti-inflammatory lipid mediator, (4Z,7Z,10Z,12E,14S,16Z,18E,20R)-14,20-dihydroxy-4,7,10,12,16,18-docosahexaenoic acid (1aa), and its three C14,C20 stereoisomers (1ab,ba,bb) were synthesized in a convergent fashion. The carbon backbone of the target compounds was assembled from seven simple fragments by employing two Sonogashira coupling and three SN2 alkynylation reactions. The thus constructed four internal alkynes were chemoselectively reduced to the corresponding (Z)-alkenes by applying a newly developed stepwise protocol: (i) hydrogenation of the three alkynes using Lindlar catalyst and (ii) formation of the dicobalt hexacarbonyl complex from the remaining alkyne and subsequent reductive decomplexation. The synthetic preparation of the stereochemically defined four isomers 1aa,ab,ba,bb permitted determination of the absolute structure of the isolated natural product to be 1aa. Biological testing of the four synthetic 14,20-dihydroxydocosahexaenoic acids disclosed similar anti-inflammatory activities of the non-natural isomers (1ab,ba,bb) and the natural form (1aa).


Subject(s)
Alkenes/chemistry , Alkynes/chemistry , Anti-Inflammatory Agents/chemical synthesis , Biological Products/chemistry , Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/chemical synthesis , Anti-Inflammatory Agents/chemistry , Stereoisomerism
15.
J Allergy Clin Immunol ; 131(2): 353-60.e1-2, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23006546

ABSTRACT

BACKGROUND: Protectin D1 (PD1) is an anti-inflammatory and proresolving lipid mediator biosynthesized from the omega-3 fatty acid docosahexaenoic acid (DHA). Exogenous PD1 conferred protection against eosinophilic inflammation in animals with experimental asthma, although its endogenous cellular source and functions in human airways are of interest. OBJECTIVE: We sought to investigate the synthesizing capacity of PD1 in eosinophils from healthy subjects and patients with severe asthma and its direct effects on eosinophil functions. METHODS: Human eosinophil-derived metabolites of arachidonic acid and DHA were analyzed with liquid chromatography-tandem mass spectrometry-based lipidomic analysis. The biological activities of PD1 on the function of human eosinophils, including chemotaxis, adhesion molecule expressions, degranulation, superoxide anion generation, or survival, were examined. RESULTS: We identified PD1 as one of the main anti-inflammatory and proresolving molecules synthesized in human eosinophils. PD1, in nanomolar concentrations, suppressed the chemotaxis induced by CCL11/eotaxin-1 or 5-oxo-eicosatetraenoic acid and modulated the expression of the adhesion molecules CD11b and L-selectin, although it had no effects on the degranulation, superoxide anion generation, or survival of the eosinophils. Compared with the cells harvested from healthy subjects, we observed a prominent decrease in the biosynthesis of PD1 by eosinophils from patients with severe asthma, even in presence of DHA. CONCLUSION: These observations are a first indication that activated human eosinophils represent a major source of PD1, which can act as a self-resolving machinery in eosinophilic inflammation, whereas the production of PD1 is impaired in patients with severe asthma.


Subject(s)
Asthma/metabolism , Docosahexaenoic Acids/biosynthesis , Eosinophils/metabolism , Adult , Aged , Anti-Inflammatory Agents/metabolism , Arachidonic Acids/metabolism , Asthma/immunology , CD11b Antigen/metabolism , Case-Control Studies , Cell Adhesion Molecules/metabolism , Chemokine CCL11/metabolism , Chemotaxis/physiology , Docosahexaenoic Acids/immunology , Eosinophils/immunology , Female , Humans , Inflammation/metabolism , L-Selectin/metabolism , Male , Neutrophils/metabolism , Superoxides/metabolism
16.
J Clin Biochem Nutr ; 55(2): 79-84, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25320453

ABSTRACT

Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid have beneficial effects in many inflammatory disorders. Although the mechanism of eicosapentaenoic acid and docosahexaenoic acid action is still not fully defined in molecular terms, recent studies have revealed that, during the course of acute inflammation, omega-3 polyunsaturated fatty acid-derived anti-inflammatory mediators including resolvins and protectins are produced. This review presents recent advances in understanding the formation and action of these mediators, especially focusing on the LC-MS/MS-based lipidomics approach and recently identified bioactive products with potent anti-inflammatory property.

17.
J Biochem ; 175(3): 225-233, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38102731

ABSTRACT

Protein lipidation is a common co- or post-translational modification that plays a crucial role in regulating the localization, interaction and function of cellular proteins. Dysregulation of lipid modifications can lead to various diseases, including cancer, neurodegenerative diseases and infectious diseases. Therefore, the identification of proteins undergoing lipidation and their lipidation sites should provide insights into many aspects of lipid biology, as well as providing potential targets for therapeutic strategies. Bottom-up proteomics using liquid chromatography/tandem mass spectrometry is a powerful technique for the global analysis of protein lipidation. Here, we review proteomic methods for profiling protein lipidation, focusing on the two major approaches: the use of chemical probes, such as lipid alkyne probes, and the use of enrichment techniques for endogenous lipid-modified peptides. The challenges facing these methods and the prospects for developing them further to achieve a comprehensive analysis of lipid modifications are discussed.


Subject(s)
Lipid Metabolism , Proteomics , Alkynes , Mass Spectrometry , Lipids
18.
J Biol Chem ; 287(13): 10525-10534, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22275352

ABSTRACT

Bioactive mediators derived from omega-3 eicosapentaenoic acid (EPA) elicit potent anti-inflammatory actions. Here, we identified novel EPA metabolites, including 8,18-dihydroxyeicosapentaenoic acid (8,18-diHEPE), 11,18-diHEPE, 12,18-diHEPE, and 17,18-diHEPE from 18-HEPE. Unlike resolvins E1 and E2, both of which are biosynthesized by neutrophils via the 5-lipoxygenase pathway, these metabolites are biosynthesized by eosinophils via the 12/15-lipoxygenase pathway. Among them, two stereoisomers of 17,18-diHEPE, collectively termed resolvin E3 (RvE3), displayed a potent anti-inflammatory action by limiting neutrophil infiltration in zymosan-induced peritonitis. The planar structure of RvE3 was unambiguously determined to be 17,18-dihydroxy-5Z,8Z,11Z,13E,15E-EPE by high resolution NMR, and the two stereoisomers were assigned to have 17,18R- and 17,18S-dihydroxy groups, respectively, using chemically synthesized 18R- and 18S-HEPE as precursors. Both 18R- and 18S-RvE3 inhibited neutrophil chemotaxis in vitro at low nanomolar concentrations. These findings suggest that RvE3 contributes to the beneficial actions of EPA in controlling inflammation and related diseases.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Docosahexaenoic Acids/metabolism , Eosinophils/metabolism , Inflammation Mediators/metabolism , Neutrophils/metabolism , Peritonitis/metabolism , Female , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy , Male , Molecular Structure , Peritonitis/chemically induced , Zymosan/toxicity
19.
Article in English | MEDLINE | ID: mdl-36566874

ABSTRACT

A hepatic crown-like structure (hCLS) formed by macrophages accumulating around lipid droplets and dead cells in the liver is a unique feature of nonalcoholic steatohepatitis (NASH) that triggers progression of liver fibrosis. As hCLS plays a key role in the progression of NASH fibrosis, hCLS formation has emerged as a potential therapeutic target. n-3 polyunsaturated fatty acids (n-3 PUFAs) have potential suppressive effects on NASH fibrosis; however, the mechanisms underlying this effect are poorly understood. Here, we report that n-3 PUFA-enriched Fat-1 transgenic mice are resistant to hCLS formation and liver fibrosis in a NASH model induced by a combination of high-fat diet, CCl4 and a Liver X receptor (LXR) agonist. Liquid chromatography-tandem mass spectrometry-based mediator lipidomics revealed that the amount of endogenous n-3 PUFA-derived metabolites, such as 17,18-dihydroxyeicosatetraenoic acid (17,18-diHETE), and 19,20-epoxy docosapentaenoic acid (19,20-EpDPE), was significantly elevated in Fat-1 mice, along with hCLS formation. In particular, DHA-derived 19,20-EpDPE produced by Cyp4f18 attenuated the hCLS formation and liver fibrosis in a G protein-coupled receptor 120 (GPR120)-dependent manner. These results indicated that 19,20-EpDPE is an endogenous active metabolite that mediates the preventive effect of n-3 PUFAs against NASH fibrosis.


Subject(s)
Fatty Acids, Omega-3 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Docosahexaenoic Acids/pharmacology , Disease Models, Animal , Fibrosis , Liver Cirrhosis/drug therapy , Fatty Acids, Omega-3/metabolism , Receptors, G-Protein-Coupled/genetics
20.
bioRxiv ; 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36798342

ABSTRACT

Chlorinated gymnastatin and dankastatin alkaloids derived from the fungal strain Gymnascella dankaliensis have been reported to possess significant anti-cancer activity but their mode of action is unknown. These members possess electrophilic functional groups that may undergo covalent bond formation with specific proteins to exert their biological activity. To better understand the mechanism of action of this class of natural products, we mapped the proteome-wide cysteine-reactivity of the most potent of these alkaloids, dankastatin B, using activitybased protein profiling chemoproteomic approaches. We identified a primary target of dankastatin B in breast cancer cells as cysteine C65 of the voltage-dependent anion selective channel on the outer mitochondrial membrane VDAC3. We demonstrated direct and covalent interaction of dankastatin B with VDAC3. VDAC3 knockdown conferred hyper-sensitivity to dankastatin B-mediated anti-proliferative effects in breast cancer cells indicating that VDAC3 was at least partially involved in the anti-cancer effects of this natural product. Our study reveals a potential mode of action of dankastatin B through covalent targeting of VDAC3 and highlight the utility of chemoproteomic approaches in gaining mechanistic understanding of electrophilic natural products.

SELECTION OF CITATIONS
SEARCH DETAIL