Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Glob Chang Biol ; 25(1): 155-173, 2019 01.
Article in English | MEDLINE | ID: mdl-30549200

ABSTRACT

Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low-rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2 . Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by -1.1 percentage points, representing a relative change of -8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.


Subject(s)
Adaptation, Physiological , Climate Change , Grain Proteins/analysis , Triticum/chemistry , Triticum/physiology , Carbon Dioxide/metabolism , Droughts , Food Quality , Models, Theoretical , Nitrogen/metabolism , Temperature
2.
Nature ; 493(7433): 514-7, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23334409

ABSTRACT

Legislation on biofuels production in the USA and Europe is directing food crops towards the production of grain-based ethanol, which can have detrimental consequences for soil carbon sequestration, nitrous oxide emissions, nitrate pollution, biodiversity and human health. An alternative is to grow lignocellulosic (cellulosic) crops on 'marginal' lands. Cellulosic feedstocks can have positive environmental outcomes and could make up a substantial proportion of future energy portfolios. However, the availability of marginal lands for cellulosic feedstock production, and the resulting greenhouse gas (GHG) emissions, remains uncertain. Here we evaluate the potential for marginal lands in ten Midwestern US states to produce sizeable amounts of biomass and concurrently mitigate GHG emissions. In a comparative assessment of six alternative cropping systems over 20 years, we found that successional herbaceous vegetation, once well established, has a direct GHG emissions mitigation capacity that rivals that of purpose-grown crops (-851 ± 46 grams of CO(2) equivalent emissions per square metre per year (gCO(2)e m(-2) yr(-1))). If fertilized, these communities have the capacity to produce about 63 ± 5 gigajoules of ethanol energy per hectare per year. By contrast, an adjacent, no-till corn-soybean-wheat rotation produces on average 41 ± 1 gigajoules of biofuel energy per hectare per year and has a net direct mitigation capacity of -397 ± 32 gCO(2)e m(-2) yr(-1); a continuous corn rotation would probably produce about 62 ± 7 gigajoules of biofuel energy per hectare per year, with 13% less mitigation. We also perform quantitative modelling of successional vegetation on marginal lands in the region at a resolution of 0.4 hectares, constrained by the requirement that each modelled location be within 80 kilometres of a potential biorefinery. Our results suggest that such vegetation could produce about 21 gigalitres of ethanol per year from around 11 million hectares, or approximately 25 per cent of the 2022 target for cellulosic biofuel mandated by the US Energy Independence and Security Act of 2007, with no initial carbon debt nor the indirect land-use costs associated with food-based biofuels. Other regional-scale aspects of biofuel sustainability, such as water quality and biodiversity, await future study.


Subject(s)
Agriculture/methods , Biofuels/supply & distribution , Renewable Energy/statistics & numerical data , Agriculture/statistics & numerical data , Biofuels/statistics & numerical data , Biomass , Carbon Footprint/statistics & numerical data , Cellulose/metabolism , Crops, Agricultural/economics , Crops, Agricultural/growth & development , Environmental Policy , Ethanol/metabolism , Ethanol/supply & distribution , Fossil Fuels/statistics & numerical data , Greenhouse Effect/prevention & control , Greenhouse Effect/statistics & numerical data , Michigan , Midwestern United States
3.
J Environ Qual ; 47(4): 710-717, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30025060

ABSTRACT

While the US Midwest is expected to serve as a primary feedstock source for cellulosic biofuel production, the impacts of residue harvesting on soil organic carbon (SOC) may greatly limit sustainable production capacity. However, viable feedstock production could be realized through adoption of management practices and cropping systems that offset residue-harvest-induced SOC losses. Sequestration of SOC can be enhanced by increasing the duration of crop soil cover through cover or double cropping or cultivation of dedicated perennials. However, assessing the efficacy of such options across sites and over long periods is experimentally challenging. Hence, we use the Environmental Productivity Integrated Climate (EPIC) model to provide such an assessment. Model-data integration was used to calibrate and evaluate model suitability, which exhibited reasonable effectiveness through of 0.97 and 0.63 for SOC stock and yield, respectively. Long-term simulations indicate considerable capacity for offsetting SOC loss. Incorporating rye ( L.) into continuous corn ( L.) and corn-soybean [ (L.) Merr.] systems offset the SOC losses induced by harvesting 21.2 and 38.3% of available stover, respectively. Similarly, converting 20.4% of corn-soybean land to miscanthus ( × J.M. Greef & Deuter ex Hodkinson & Renvoize) or 27.5% of land to switchgrass ( L.) offset the SOC impacts of harvesting 60% of stover from the remaining corn-soybean lands. These responses indicate that adoption of such measures would sizably affect the life cycle consequences of residue-derived biofuels and expand estimates of sustainable cellulosic feedstock production capacity from the US Midwest.


Subject(s)
Biofuels , Carbon , Soil/chemistry , Zea mays , Agriculture
4.
J Environ Qual ; 42(6): 1802-14, 2013 Nov.
Article in English | MEDLINE | ID: mdl-25602420

ABSTRACT

The use of marginal lands for biofuel production has been proposed as a promising solution for meeting biofuel demands while avoiding food-feed-fuel conflicts. However, uncertainty surrounds whether marginal lands can be reliably located, as well as their inherent biofuel potential and the possible environmental impacts. We developed a quantitative approach that integrates high-resolution land cover and land productivity to classify productive croplands and nonarable marginal lands in a nine-county region in southern Michigan. The classified lands were then examined with the spatially explicit modeling framework using the Environmental Policy Integrated Climate (EPIC) model to estimate net energy (NE) and soil organic carbon (SOC) changes associated with the cultivation of different annual and perennial production systems. Simulation results suggest that biofuel production systems underperform on marginal lands when compared to productive croplands. However, we found perennial grasses could perform better than annual crops. Hence, when growing perennial bioenergy crops on marginal lands instead of productive croplands, less additional land (about 0.09 ha per each hectare planted) would be needed to achieve the same NE than if growing annual bioenergy crops (additional 0.17 ha per hectare planted). Miscanthus ( × ) and switchgrass ( L.) can produce 112.43 and 74.61 GJ ha yr NE, respectively, and have the potential to sequester, on average, 0.59 and 0.23 Mg C ha yr SOC, respectively. Notably, simulation results indicate substantial variability of the NE and SOC storage potential across the study region. Thus, although perennial energy crops are promising options for biofuel production on marginal lands, given the large spatial variability, regional- and site-specific management strategies are required for sustainable biofuel production.

5.
PLoS One ; 13(6): e0198748, 2018.
Article in English | MEDLINE | ID: mdl-29949598

ABSTRACT

Agricultural production must increase to feed a growing and wealthier population, as well as to satisfy increasing demands for biomaterials and biomass-based energy. At the same time, deforestation and land-use change need to be minimized in order to preserve biodiversity and maintain carbon stores in vegetation and soils. Consequently, agricultural land use needs to be intensified in order to increase food production per unit area of land. Here we use simulations of AgMIP's Global Gridded Crop Model Intercomparison (GGCMI) phase 1 to assess implications of input-driven intensification (water, nutrients) on crop yield and yield stability, which is an important aspect in food security. We find region- and crop-specific responses for the simulated period 1980-2009 with broadly increasing yield variability under additional nitrogen inputs and stabilizing yields under additional water inputs (irrigation), reflecting current patterns of water and nutrient limitation. The different models of the GGCMI ensemble show similar response patterns, but model differences warrant further research on management assumptions, such as variety selection and soil management, and inputs as well as on model implementation of different soil and plant processes, such as on heat stress, and parameters. Higher variability in crop productivity under higher fertilizer input will require adequate buffer mechanisms in trade and distribution/storage networks to avoid food price volatility.


Subject(s)
Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Internationality , Nutrients/pharmacology , Water/pharmacology , Dose-Response Relationship, Drug , Models, Statistical
6.
Science ; 356(6345)2017 06 30.
Article in English | MEDLINE | ID: mdl-28663443

ABSTRACT

Cellulosic crops are projected to provide a large fraction of transportation energy needs by mid-century. However, the anticipated land requirements are substantial, which creates a potential for environmental harm if trade-offs are not sufficiently well understood to create appropriately prescriptive policy. Recent empirical findings show that cellulosic bioenergy concerns related to climate mitigation, biodiversity, reactive nitrogen loss, and crop water use can be addressed with appropriate crop, placement, and management choices. In particular, growing native perennial species on marginal lands not currently farmed provides substantial potential for climate mitigation and other benefits.


Subject(s)
Biofuels , Conservation of Natural Resources , Crops, Agricultural/metabolism , Lignin/metabolism , Climate , Crops, Agricultural/growth & development , Fertilizers , Nitrogen , Plants/microbiology
8.
Sci Total Environ ; 463-464: 810-22, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23859899

ABSTRACT

Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO2 emission, one important source of greenhouse gasses (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)-residue and simulate land-atmosphere carbon exchange. We test this new SWAT-C model with daily eddy covariance (EC) observations of net ecosystem exchange (NEE) and evapotranspiration (ET) and annual crop yield at six sites across the U.S. Midwest. Results show that SWAT-C simulates well multi-year average NEE and ET across the spatially distributed sites and capture the majority of temporal variation of these two variables at a daily time scale at each site. Our analyses also reveal that performance of SWAT-C is influenced by multiple factors, such as crop management practices (irrigated vs. rainfed), completeness and accuracy of input data, crop species, and initialization of state variables. Overall, the new SWAT-C demonstrates favorable performance for simulating land-atmosphere carbon exchange across agricultural sites with different soils, climate, and management practices. SWAT-C is expected to serve as a useful tool for including carbon flux into consideration in sustainable watershed management under a changing climate. We also note that extensive assessment of SWAT-C with field observations is required for further improving the model and understanding potential uncertainties of applying it across large regions with complex landscapes.


Subject(s)
Agriculture , Carbon Cycle , Soil , Water Quality , Biomass , Climate , Ecosystem , Environmental Monitoring/standards , Midwestern United States , Models, Theoretical , Soil/standards , Water Quality/standards
SELECTION OF CITATIONS
SEARCH DETAIL