Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Bot ; 111(1): e16269, 2024 01.
Article in English | MEDLINE | ID: mdl-38126922

ABSTRACT

PREMISE: The timing and pattern of a plant's flowering can have important consequences for reproductive success. Variation in flowering phenology may influence the number of prospective mates, the risk of mating with lower quality individuals, and the likelihood of self-pollination. Here we use a common garden experiment to explore within- and among-population variation in phenology. Our work provides new insights into how flowering phenology shapes mating opportunity and flowering synchrony in a self-compatible perennial. METHODS: To quantify variation in flowering phenology we raised progeny from nine populations of Mimulus ringens in a common garden. For each individual, we measured phenological traits including age at flowering onset, daily floral display size, total flower number, and flowering synchrony with other members of the population, and related these traits to mating opportunity. We also tested how individual flowering schedules influence the magnitude of synchrony. RESULTS: Flowering phenology and synchrony varied substantially within and among populations. From day to day, plants often oscillated between large and small daily floral displays. Additionally, flowering schedules of individual plants strongly influenced flowering synchrony and, along with the number of flowering days, markedly affected plants' mating opportunity. CONCLUSIONS: Phenological traits such as flowering synchrony can affect the quantity of mating opportunities and may be important targets of natural selection. Our results highlight the need for studies that quantify flowering patterns of individuals as well as populations.


Subject(s)
Pollination , Reproduction , Humans , Selection, Genetic , Flowers , Phenotype
2.
Microbiome ; 10(1): 52, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35331334

ABSTRACT

BACKGROUND: Elucidating the spatial structure of host-associated microbial communities is essential for understanding taxon-taxon interactions within the microbiota and between microbiota and host. Macroalgae are colonized by complex microbial communities, suggesting intimate symbioses that likely play key roles in both macroalgal and bacterial biology, yet little is known about the spatial organization of microbes associated with macroalgae. Canopy-forming kelp are ecologically significant, fixing teragrams of carbon per year in coastal kelp forest ecosystems. We characterized the micron-scale spatial organization of bacterial communities on blades of the kelp Nereocystis luetkeana using fluorescence in situ hybridization and spectral imaging with a probe set combining phylum-, class-, and genus-level probes to localize and identify > 90% of the microbial community. RESULTS: We show that kelp blades host a dense microbial biofilm composed of disparate microbial taxa in close contact with one another. The biofilm is spatially differentiated, with clustered cells of the dominant symbiont Granulosicoccus sp. (Gammaproteobacteria) close to the kelp surface and filamentous Bacteroidetes and Alphaproteobacteria relatively more abundant near the biofilm-seawater interface. A community rich in Bacteroidetes colonized the interior of kelp tissues. Microbial cell density increased markedly along the length of the kelp blade, from sparse microbial colonization of newly produced tissues at the meristematic base of the blade to an abundant microbial biofilm on older tissues at the blade tip. Kelp from a declining population hosted fewer microbial cells compared to kelp from a stable population. CONCLUSIONS: Imaging revealed close association, at micrometer scales, of different microbial taxa with one another and with the host. This spatial organization creates the conditions necessary for metabolic exchange among microbes and between host and microbiota, such as provisioning of organic carbon to the microbiota and impacts of microbial nitrogen metabolisms on host kelp. The biofilm coating the surface of the kelp blade is well-positioned to mediate interactions between the host and surrounding organisms and to modulate the chemistry of the surrounding water column. The high density of microbial cells on kelp blades (105-107 cells/cm2), combined with the immense surface area of kelp forests, indicates that biogeochemical functions of the kelp microbiome may play an important role in coastal ecosystems. Video abstract.


Subject(s)
Kelp , Microbiota , Bacteria/genetics , Bacteroidetes , Carbon , In Situ Hybridization, Fluorescence , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL