Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(51): 32402-32412, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288722

ABSTRACT

Binding of the intracellular adapter proteins talin and its cofactor, kindlin, to the integrin receptors induces integrin activation and clustering. These processes are essential for cell adhesion, migration, and organ development. Although the talin head, the integrin-binding segment in talin, possesses a typical FERM-domain sequence, a truncated form has been crystallized in an unexpected, elongated form. This form, however, lacks a C-terminal fragment and possesses reduced ß3-integrin binding. Here, we present a crystal structure of a full-length talin head in complex with the ß3-integrin tail. The structure reveals a compact FERM-like conformation and a tightly associated N-P-L-Y motif of ß3-integrin. A critical C-terminal poly-lysine motif mediates FERM interdomain contacts and assures the tight association with the ß3-integrin cytoplasmic segment. Removal of the poly-lysine motif or disrupting the FERM-folded configuration of the talin head significantly impairs integrin activation and clustering. Therefore, structural characterization of the FERM-folded active talin head provides fundamental understanding of the regulatory mechanism of integrin function.


Subject(s)
Integrin beta3/metabolism , Talin/chemistry , Talin/metabolism , Amino Acid Motifs , Animals , Binding Sites , Humans , Integrin beta3/chemistry , Leucine/metabolism , Mice , Microscopy, Electron, Transmission , Models, Molecular , Mutagenesis , Polylysine/chemistry , Protein Domains , Protein Folding , Talin/genetics
2.
J Cell Sci ; 133(19)2020 10 12.
Article in English | MEDLINE | ID: mdl-33046605

ABSTRACT

Integrin activation and clustering by talin are early steps of cell adhesion. Membrane-bound talin head domain and kindlin bind to the ß integrin cytoplasmic tail, cooperating to activate the heterodimeric integrin, and the talin head domain induces integrin clustering in the presence of Mn2+ Here we show that kindlin-1 can replace Mn2+ to mediate ß3 integrin clustering induced by the talin head, but not that induced by the F2-F3 fragment of talin. Integrin clustering mediated by kindlin-1 and the talin head was lost upon deletion of the flexible loop within the talin head F1 subdomain. Further mutagenesis identified hydrophobic and acidic motifs in the F1 loop responsible for ß3 integrin clustering. Modeling, computational and cysteine crosslinking studies showed direct and catalytic interactions of the acidic F1 loop motif with the juxtamembrane domains of α- and ß3-integrins, in order to activate the ß3 integrin heterodimer, further detailing the mechanism by which the talin-kindlin complex activates and clusters integrins. Moreover, the F1 loop interaction with the ß3 integrin tail required the newly identified compact FERM fold of the talin head, which positions the F1 loop next to the inner membrane clasp of the talin-bound integrin heterodimer.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Integrin beta3 , Talin , Cell Adhesion , Cluster Analysis , Integrin beta3/metabolism , Protein Binding , Protein Structure, Tertiary , Talin/genetics , Talin/metabolism
3.
J Cell Sci ; 132(8)2019 04 25.
Article in English | MEDLINE | ID: mdl-30890648

ABSTRACT

Heterodimeric integrin receptors control cell adhesion, migration and extracellular matrix assembly. While the α integrin subunit determines extracellular ligand specificity, the ß integrin chain binds to an acidic residue of the ligand, and cytoplasmic adapter protein families such as talins, kindlins and paxillin, to form mechanosensing cell matrix adhesions. Alternative splicing of the ß1 integrin cytoplasmic tail creates ubiquitously expressed ß1A, and the heart and skeletal muscle-specific ß1D form. To study the physiological difference between these forms, we developed fluorescent ß1 integrins and analyzed their dynamics, localization, and cytoplasmic adapter recruitment and effects on cell proliferation. On fibronectin, GFP-tagged ß1A integrin showed dynamic exchange in peripheral focal adhesions, and long, central fibrillar adhesions. In contrast, GFP-ß1D integrins exchanged slowly, forming immobile and short central adhesions. While adhesion recruitment of GFP-ß1A integrin was sensitive to C-terminal tail mutagenesis, GFP-ß1D integrin was recruited independently of the distal NPXY motif. In addition, a P786A mutation in the proximal, talin-binding NPXY783 motif switched ß1D to a highly dynamic integrin. In contrast, the inverse A786P mutation in ß1A integrin interfered with paxillin recruitment and proliferation. Thus, differential ß1 integrin splicing controls integrin-dependent adhesion signaling, to adapt to the specific physiological needs of differentiated muscle cells.


Subject(s)
Alternative Splicing , Integrin beta1/metabolism , Paxillin/metabolism , Signal Transduction , Animals , Cell Proliferation , Cytoplasm/metabolism , Cytoskeleton/metabolism , Fibronectins/physiology , Focal Adhesions/physiology , Mice , Muscle, Skeletal/metabolism , NIH 3T3 Cells
4.
FASEB J ; 28(10): 4441-56, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25002122

ABSTRACT

Kit ligand (KitL) and its tyrosine kinase receptor c-kit are critical for germ cells, melanocytes, mastocytes, and hematopoietic stem cells. Alternative splicing of KitL generates membrane-bound KitL (mb-KitL) or soluble KitL, providing survival or cell migration, respectively. Here we analyzed whether c-kit can function both as an adhesion and signaling receptor to mb-KitL presented by the environmental niche. At contacts between fibroblasts and MC/9 mast cells, mb-KitL, and c-kit formed ligand/receptor clusters that formed stable complexes, which resisted dissociation by c-kit blocking mAbs and provided cell anchorage under physiological shear stresses. Clusters recruited tyrosine-phosphorylated proteins and induced spatially restricted F-actin polymerization. Mutational analysis of c-kit demonstrated kinase-independent mb-KitL/c-kit clustering, anchorage, F-actin polymerization, and Tyr567-dependent cluster phosphorylation. Kinase inhibition of c-kit by imatinib reduced cluster coalescence, but allowed cluster phosphorylation and F-actin polymerization, which required PI3K recruitment and a newly identified juxtamembrane residue. Synergies between integrin and c-kit-mediated spreading and adhesion of MC/9 cells were studied in vitro on immobilized-KitL/fibronectin surfaces. While c-kit blocking antibodies prevented spreading, imatinib blocked spreading induced by soluble- but not immobilized KitL. Thus, "mechanical" activation of c-kit provides signaling, niche-anchorage, and synergies with integrin-mediated adhesion, which is independent of kinase function and resistant to c-kit kinase inhibitors.-


Subject(s)
Benzamides/pharmacology , Cell Movement , Cellular Microenvironment , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/metabolism , Pyrimidines/pharmacology , Actins/metabolism , Animals , COS Cells , Cell Adhesion , Chlorocebus aethiops , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/physiology , Imatinib Mesylate , Integrins/metabolism , Mast Cells/drug effects , Mast Cells/metabolism , Mast Cells/physiology , Mice , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/genetics , Signal Transduction
5.
FASEB J ; 26(9): 3738-53, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22637532

ABSTRACT

Morphogenesis, as illustrated by melanocyte migration and homing to the skin, requires cadherin adhesion, integrin-dependent migration and Kit-ligand growth factor signaling. However, it is not known how Kit ligand regulates integrin or cadherin-dependent intraepidermal melanocyte behavior. To answer this question, we developed specific 2-dimensional (2D) and 3D culture systems analyzing how soluble or immobilized Kit-ligand-regulated melanocyte migration on vitronectin and laminin, or within a monolayer of kidney epithelial cells. In a 2D system, soluble Kit ligand stimulated integrin-dependent melanoblast migration and chemotaxis and accelerated integrin turnover. In contrast, immobilized, but not soluble, Kit ligand, enhanced integrin-dependent melanocyte spreading on suboptimal laminin concentrations. In 3D, membrane-bound Kit ligand induced intraepithelial melanocyte proliferation, survival, and tight adhesion to epithelial cells, while cleavable Kit ligand was less effective. In contrast, melanocyte motility was independent of membrane-bound Kit ligand, but increased in the presence of the cleavable Kit-ligand isoform. Transmembrane-dimerization or basolateral-targeting mutants of Kit ligand altered intraepithelial melanocyte localization, survival, and adhesion to epithelial cells. These data and the identification of c-kit/Kit-ligand clusters at cell contacts suggest that membrane-bound Kit ligand captures cell surface-expressed c-kit, providing mechanical anchoring and survival signaling within intraepithelial niches, and thereby defining a new mechanism for melanocyte homeostasis and requirement for environmental niches.


Subject(s)
Cell Adhesion/physiology , Cell Survival/physiology , Epithelial Cells/cytology , Melanocytes/cytology , Stem Cell Factor/physiology , Amino Acid Sequence , Animals , Coculture Techniques , Culture Media, Conditioned , Dogs , Flow Cytometry , Madin Darby Canine Kidney Cells , Mice , Molecular Sequence Data
6.
FASEB J ; 23(9): 3037-48, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19386768

ABSTRACT

Kit-ligand (Kitl), also known as stem cell factor, is a membrane-anchored, noncovalently bound dimer signaling via the c-kit receptor tyrosine kinase, required for migration, survival, and proliferation of hematopoietic stem and germ cells, melanocytes, and mastocytes. Despite its fundamental role in morphogenesis and stem cell biology, the mechanisms that regulate Kitl dimerization are not well understood. By employing cell-permeable cross-linker and quantitative bimolecular fluorescence complementation of wild-type and truncated forms of Kitl, we determined that Kitl dimerization is initiated in the endoplasmic reticulum and mediated to similar levels by the transmembrane and the extracellular growth factor domain. Further biochemical and mutational analysis revealed a conserved Ser-Gly-Gly-Tyr-containing motif that is required for transmembrane domain dimerization and efficient cell-surface expression of Kitl. A novel intracellular capture assay with the Kitl transmembrane domain as bait revealed specific interactions with Kitl, but not with unrelated transmembrane proteins. During evolution, the transmembrane dimerization motif appeared in Kitl at the transition from teleosts to tetrapods, which correlates with the emergence of Kitl as a supporter of stem cell populations. Thus, transmembrane-mediated association of membrane-anchored growth factors consists of a novel mechanism to improve paracrine signaling and morphogenesis.


Subject(s)
Cell Membrane/metabolism , Protein Multimerization , Stem Cell Factor/chemistry , Amino Acid Motifs , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Conserved Sequence , Dogs , Membrane Proteins/chemistry , Mice
7.
J Cell Biol ; 205(2): 265-81, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24778313

ABSTRACT

Integrin-dependent cell adhesion and spreading are critical for morphogenesis, tissue regeneration, and immune defense but also tumor growth. However, the mechanisms that induce integrin-mediated cell spreading and provide mechanosensing on different extracellular matrix conditions are not fully understood. By expressing ß3-GFP-integrins with enhanced talin-binding affinity, we experimentally uncoupled integrin activation, clustering, and substrate binding from its function in cell spreading. Mutational analysis revealed Tyr747, located in the first cytoplasmic NPLY(747) motif, to induce spreading and paxillin adapter recruitment to substrate- and talin-bound integrins. In addition, integrin-mediated spreading, but not focal adhesion localization, was affected by mutating adjacent sequence motifs known to be involved in kindlin binding. On soft, spreading-repellent fibronectin substrates, high-affinity talin-binding integrins formed adhesions, but normal spreading was only possible with integrins competent to recruit the signaling adapter protein paxillin. This proposes that integrin-dependent cell-matrix adhesion and cell spreading are independently controlled, offering new therapeutic strategies to modify cell behavior in normal and pathological conditions.


Subject(s)
Integrin beta3/metabolism , Mechanotransduction, Cellular/physiology , Talin/metabolism , Amino Acid Motifs , Animals , COS Cells , Cell Adhesion/physiology , Chlorocebus aethiops , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Integrin beta3/genetics , Mice , NIH 3T3 Cells , Paxillin/genetics , Paxillin/metabolism , Talin/genetics
8.
J Cell Biol ; 187(5): 715-31, 2009 Nov 30.
Article in English | MEDLINE | ID: mdl-19948488

ABSTRACT

Integrin-dependent adhesion sites consist of clustered integrins that transmit mechanical forces and provide signaling required for cell survival and morphogenesis. Despite their importance, the regulation of integrin clustering by the cytoplasmic adapter protein talin (Tal) and phosphatidylinositol (PI)-4,5-biphosphate (PI(4,5)P(2)) lipids nor their dynamic coupling to the actin cytoskeleton is fully understood. By using a Tal-dependent integrin clustering assay in intact cells, we identified a PI(4,5)P(2)-binding basic ridge spanning across the F2 and F3 domains of the Tal head that regulates integrin clustering. Clustering requires a new PI(4,5)P(2)-binding site in F2 and is negatively regulated by autoinhibitory interactions between F3 and the Tal rod (Tal-R). The release of the Tal-R exposes a new beta3-integrin-binding site in F3, enabling interaction with a membrane proximal acidic motif, which involves the formation of salt bridges between K(316) and K(324) with E(726) and D(723), respectively. This interaction shields the beta-integrin tail from reassociation with its alpha subunit, thereby maintaining the integrin in a substrate-binding and clustering-competent form.


Subject(s)
Integrin beta3/metabolism , Phosphatidylinositol 4,5-Diphosphate/physiology , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Cell Adhesion , Cell Line, Tumor , Mice , Models, Biological , Models, Molecular , Molecular Sequence Data , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Structure, Tertiary , Sequence Alignment , Talin/chemistry , Talin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL