Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
Add more filters

Publication year range
1.
Mol Pharm ; 21(6): 2699-2712, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38747900

ABSTRACT

This study aims to encapsulate gemcitabine (GEM) using a phospholipid complex (PLC) in lipid nanoparticles (NPs) to achieve several desirable outcomes, including high drug loading, uniform particle size, improved therapeutic efficacy, and reduced toxicities. The successful preparation of GEM-loaded lipid NPs (GEM-NPs) was accomplished using the emulsification-solidification method, following optimization through Box-Behnken design. The size of the GEM-NP was 138.5 ± 6.7 nm, with a low polydispersity index of 0.282 ± 0.078, as measured by a zetasizer and confirmed by transmission electron and atomic force microscopy. GEM-NPs demonstrated sustained release behavior, surpassing the performance of the free GEM and phospholipid complex. Moreover, GEM-NPs exhibited enhanced cytotoxicity, apoptosis, and cell uptake in Panc-2 and Mia PaCa cells compared to the free GEM. The in vivo pharmacokinetics revealed approximately 4-fold higher bioavailability of GEM-NPs in comparison with free GEM. Additionally, the pharmacodynamic evaluation conducted in a DMBA-induced pancreatic cancer model, involving histological examination, serum IL-6 level estimation, and expression of cleaved caspase-3, showed the potential of GEM-NPs in the management of pancreatic cancer. Consequently, the lipid NP-based approach developed in our investigation demonstrates high stability and uniformity and holds promise for enhancing the therapeutic outcomes of GEM.


Subject(s)
Deoxycytidine , Gemcitabine , Nanoparticles , Pancreatic Neoplasms , Phospholipids , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Deoxycytidine/pharmacokinetics , Deoxycytidine/administration & dosage , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Nanoparticles/chemistry , Animals , Humans , Cell Line, Tumor , Phospholipids/chemistry , Mice , Particle Size , Apoptosis/drug effects , Drug Carriers/chemistry , Lipids/chemistry , Drug Liberation , Male , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacokinetics , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacology , Drug Stability , Rats , Liposomes
2.
Bioconjug Chem ; 34(9): 1528-1552, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37603704

ABSTRACT

Most cancer patients rarely benefit from monodrug therapy because of both cancer complexity and tumor environment. One of the main reasons for this failure is insufficient accumulation of the optimal dose at the tumorous site. Our investigation implies a promising strategy to engineer prodrug nanoparticles (NPs) of bortezomib (BTZ) and selenium (Se) using sialic acid (SAL) as a ligand to improve breast cancer therapy. BTZ was conjugated with SAL and HPMA (N-2-hydroxypropyl methacrylamide) to prepare a prodrug conjugate; BTZ-SAL-HPMA (BSAL-HP) and then fabricated into prodrug NPs with Se (Se_BSAL-HP prodrug NPs). The self-assembly of prodrug NPs functionalized with Se showed size (204.13 ± 0.02 nm) and zeta potential (-31.0 ± 0.11 mV) in dynamic light scattering (DLS) experiments and spherical shape in TEM and SEM analysis. Good stability and low pH drug release profile were characterized by Se_BSAL-HP prodrug NPs. The tumor-selective boronate-ester-based prodrug NPs of BTZ in combination with Se endowed a synergistic effect against cancer cells. Compared to prodrug conjugate, Se_BSAL-HP prodrug NPs exhibited higher cell cytotoxicity and enhanced cellular internalization with significant changes in mitochondria membrane potential (MMP). Elevated apoptosis was observed in the (G2/M) phase of the cell cycle for Se_BSAL-HP prodrug NPs (2.7-fold) higher than BTZ. In vivo studies were performed on Sprague-Dawley rats and resulted in positive trends. The increased therapeutic activity of Se_BSAL-HP prodrug NPs inhibited primary tumor growth and showed 43.05 fold decrease in tumor volume than the control in 4T1 tumor bearing mice. The surprising and remarkable outcomes for Se_BSAL-HP prodrug NPs were probably due to the ROS triggering effect of boronate ester and selenium given together.


Subject(s)
Neoplasms , Prodrugs , Selenium , Rats , Animals , Mice , Rats, Sprague-Dawley , Prodrugs/therapeutic use , N-Acetylneuraminic Acid , Bortezomib/pharmacology , Bortezomib/therapeutic use , Esters
3.
Mol Pharm ; 20(1): 524-544, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36306447

ABSTRACT

Breast cancer leads to the highest mortality among women resulting in a major clinical burden. Multidrug therapy is more efficient in such patients compared to monodrug therapy. Simultaneous combinatorial or co-delivery garnered significant interest in the past years. Caffeic acid (CFA) (a natural polyphenol) has received growing attention because of its anticarcinogenic and antioxidant potential. Bortezomib (BTZ) is a proteasome inhibitor and may be explored for treating breast cancer. Despite its high anticancer activity, the low water solubility and chemical instability restrict its efficacy against solid tumors. In the present study, we designed and investigated a HP-PCL (N-2-hydroxypropylmethacrylamide-polycaprolactone) polymeric micellar (PMCs) system for the simultaneous delivery of BTZ and CFA in the treatment of breast cancer. The designed BTZ+CFA-HP-PCL PMCs were fabricated, optimized, and characterized for size, zeta potential, surface morphology, and in vitro drug release. Developed nanosized (174.6 ± 0.24 nm) PMCs showed enhanced cellular internalization and cell cytotoxicity in both MCF-7 and MDA-MB-231 cells. ROS (reactive oxygen species) levels were highest in BTZ-HP-PCL PMCs, while CFA-HP-PCL PMCs significantly (p < 0.001) scavenged the ROS generated in 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. The mitochondrial membrane potential (MMP) assay revealed intense and significant green fluorescence in both types of cancer cells when treated with BTZ-HP-PCL PMCs (p < 0.001) indicating apoptosis or cell death. The pharmacokinetic studies revealed that BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs exhibited the highest bioavailability, enhanced plasma half-life, decreased volume of distribution, and lower clearance rate than the pure combination of drugs. In the organ biodistribution studies, the combination of BTZ+CFA showed higher distribution in the spleen and the heart. Overall findings of in vitro studies surprisingly resulted in better therapeutic efficiency of BTZ-HP-PCL PMCs than BTZ+CFA-HP-PCL PMCs. However, the in vivo tumor growth inhibition study performed in tumor-induced mice concluded that the tumor growth was inhibited by both BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs (p < 0.0001) more efficiently than pure BTZ and the combination (BTZ+CFA), which may be due to the conversion of boronate ester into boronic acid. Henceforth, the combination of BTZ and CFA provides further indications to be explored in the future to support the hypothesis that BTZ may work with polyphenol (CFA) in the acidic environment of the tumor.


Subject(s)
Antineoplastic Agents , Proteasome Inhibitors , Female , Mice , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Micelles , Reactive Oxygen Species , Tissue Distribution , Drug Therapy, Combination , Leprostatic Agents/therapeutic use , Bortezomib/pharmacology , Bortezomib/chemistry , Polymers/chemistry , Cell Line, Tumor , Antineoplastic Agents/chemistry
4.
J Liposome Res ; : 1-25, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37594466

ABSTRACT

The object of the current study was to develop and evaluate trastuzumab-conjugated Paclitaxel (PTX) and Elacridar (ELA)-loaded PEGylated pH-sensitive liposomes (TPPLs) for site-specific delivery of an anticancer drug. In this study, paclitaxel is used as an anticancer drug which promotes microtubules polymerization and arrest cell cycle progression at mitosis and subsequently leading to cell death. The single use of PTX causes multiple drug resistance (MDR) and results failure of the therapy. Hence, the combination of PTX and P-glycoprotein inhibitor (ELA) are used to achieve maximum therapeutic effects of PTX. Moreover, monoclonal antibody (trastuzumab) is used as ligand for the targeting the drug bearing carriers to BC. Thus, trastuzumab anchored pH-sensitive liposomes bearing PTX and ELA were developed using thin film hydration method and Box-Behnken Design (BBD) for optimizing various formulation variables. The optimized liposomes undergo characterization such as vesicle size, PDI, and zeta potential, which were observed to be 122 ± 2.14 nm, 0.224, and -15.5 mV for PEGylated pH-sensitive liposomes (PEG-Ls) and 134 ± 1.88 nm, 0.238, and -13.98 mV for TPPLs, respectively. The results of the in vitro drug release study of both formulations (PEG-Ls and TPPLs) showed enhanced percentage drug release at an acidic pH 5 as compared to drug release at a physiological pH 7.4. Further, the in vitro cytotoxicity studies were performed in the SK-BR-3 and MDA-MB-231 cell lines. The cellular uptake study of FITC-loaded TPPLs in SK-BR-3 cells showed greater uptake than FITC-loaded PEG-Ls, while in MDA-MB-231 cells there was no significant difference in cell uptake between FITC-loaded TPPLs and FITC-loaded PEG-Ls. Hence, it can be concluded that the HER-2 overexpressing cancer cell line (SK-BR-3) was showed better cytotoxicity and cell uptake of TPPLs than the cells that expressed low levels of HER2 (MDA-MB-231). The in vivo tumor regression study, TPPLs showed significantly more tumor burden reduction i.e. up ∼74% as compared to other liposomes after 28 days. Furthermore, the in vivo studies of TPPLs showed a minimal toxicity profile, minimal hemolysis, higher tumor tissue distribution, and superior antitumor efficacy as compared to other formulations. These studies confirmed that TPPLs are a safe and efficacious treatment for breast cancer.

5.
AAPS PharmSciTech ; 24(7): 180, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697085

ABSTRACT

Ferroptosis, a pathway dependent on oxygen and iron catalysts, holds promise as a therapeutic approach for cancer treatment due to its manageable regulation, direct control, and immunogenic properties. The sensitivity of cancer cells to ferroptosis induction varies based on their metabolic, genetic, and signalling pathways, prompting the use of combination therapy. In this study, we conducted a screening of drug combinations, including sorafenib (SOR) with simvastatin (SIM), phenethyl isothiocyanate, and trigonelline, in MDA-MB-231, A549, and HeLa cells to assess their cytotoxicity. The SOR-SIM combination exhibited a synergistic effect in MDA-MB-231, A549, and HeLa cells, with calculated CI values of ~ 0.66, 0.53, and 0.59, respectively. Furthermore, co-treatment with ferrostatin-1 resulted in a concentration-dependent increase in the IC50 values. Additionally, SOR + SIM demonstrated a significant reduction in GSH levels, an increase in MDA levels, and mitochondrial membrane depolarization across all three cell lines, indicating their ferroptosis inducing potential. In-vivo studies showed a significant reduction in tumor volume by 3.53-, 2.55-, and 1.47-fold compared to control, SIM, and SOR, respectively. Toxicity assessments revealed insignificant changes in biomarker levels and no observable deformations in isolated organs, except for erythrocyte shrinkage and membrane scrambling effects caused by the SOR + SIM combination. Overall, our findings highlight the potential of the SOR + SIM combination as an effective strategy for cancer treatment, emphasizing the importance of further research in targeted drug delivery systems to ensure its safety.


Subject(s)
Ferroptosis , Neoplasms , Humans , Early Detection of Cancer , HeLa Cells , Sorafenib/pharmacology , Drug Delivery Systems , Neoplasms/drug therapy
6.
Mol Pharm ; 19(5): 1325-1337, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35437994

ABSTRACT

Cisplatin is a platinum (Pt)-based anticancer drug with broad-scale clinical utility. However, due to its hydrophilic nature and high kinetic reactivity, it offers numerous drug delivery challenges. Limitations such as severe systemic toxicities, chemoresistance, extensive cisplatin-plasma protein interaction, and limited cellular drug uptake reduce the therapeutic impact of cisplatin therapy. Cisplatin(IV) prodrug formation can effectively resolve these challenges. The selection of axial ligands could play a key role in determining the fate of cisplatin(IV) prodrugs by modulating the therapeutic and biopharmaceutical outcomes of therapy. Hereby, three cisplatin(IV) derivatives were developed utilizing valproate, tocopherol, and chlorambucil as axial ligands, and their biopharmaceutical performance was compared along with cisplatin. The impact of cisplatin(IV) derivative formation on their kinetic stability, drug-albumin interaction, cytotoxicity profile, cellular uptake pattern, self-assembling behavior, hemotoxicity, and tumor biodistribution pattern was analyzed to establish the correlation between the structural properties of cisplatin(IV) agents and their biopharmaceutical outcomes. The kinetic inertness of the designed cisplatin(IV) compounds helped in minimizing their plasma protein interactions and ensuring their stability in the blood environment. The lipophilicity enhancement due to Pt(IV) prodrug formation critically helped in enhancing the cellular drug uptake and reduced the dependence on transporters for drug uptake. The lipophilicity and activity of axial ligands were the key drivers governing the biopharmaceutical performance of the Pt(IV) derivatives. The properties of the axial ligand, such as its therapeutic activity, chemical backbone, and functional groups present in its structure, were the critical factors determining their plasma protein interaction, cellular uptake, anticancer activity, and self-assembly pattern. Cisplatin(IV) derivative formation further improved the amount of platinum accumulated in tumors after intravenous injection compared to free cisplatin therapy (2.7-5.4 folds increment) and reduced drug-erythrocyte interactions. Overall, the results highlighted the potential of cisplatin(IV) agents in resolving cisplatin drug delivery challenges and denoted the critical role of axial ligand selection in Pt(IV) prodrug designing.


Subject(s)
Antineoplastic Agents , Biological Products , Prodrugs , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/chemistry , Cisplatin/pharmacology , Cisplatin/therapeutic use , Ligands , Platinum/chemistry , Prodrugs/chemistry , Tissue Distribution
7.
AAPS PharmSciTech ; 23(7): 238, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36002600

ABSTRACT

The current study elucidates the improved drug loading of paclitaxel (PTX) in lipid- and D-α-tocopheryl polyethylene glycol succinate (TPGS)-based core-shell-type lipid nanocapsules (PTX-TPGS-LNC) for augmenting the therapeutic efficacy and curbing the toxicity. PTX-TPGS-LNCs were formulated by employing anti-solvent precipitation technique and displayed a particle size of 162.1 ± 4.70 nm and % practical drug loading of 15.04 ± 2.44%. Electron microscopy revealed that PTX-TPGS-LNCs have spherical morphology and the inner core was surrounded by a relatively lighter region, i.e., layer of lipids and TPGS. The nature of loaded PTX inside the PTX-TPGS-LNC was also confirmed using DSC and PXRD analysis. The in vitro release study showed biphasic and sustained release pattern of PTX from PTX-TPGS-LNC and it showed ~ threefold higher PTX uptake in MCF-7 cell line in comparison to free PTX. Moreover, it was apparent from the cytotoxicity assay that PTX-TPGS-LNC displayed higher cytotoxicity in MCF-7 cells and revealed ~ 2.92-fold decrease in IC50 value as against free PTX when incubated for 72 h. The apoptotic index in case of PTX-TPGS-LNC was ~ twofold higher than free PTX. The pharmacokinetic profile of PTX-TPGS-LNC revealed a ~ 3.18-fold increase in t1/2 and a ~ 2.62-fold higher AUC(0→∞) compared to Intaxel®. Finally, treatment with PTX-TPGS-LNC demonstrated significant lowering in the % tumor burden and serum toxicity markers compared to marketed formulation Intaxel®. Thus, the lipid- and TPGS-based core-shell-type LNC with high PTX loading can advance the existing standards of therapy for overshadowing cancer.


Subject(s)
Nanocapsules , Paclitaxel , Cell Line, Tumor , Humans , Lipids , Polyethylene Glycols , Vitamin E , alpha-Tocopherol
8.
Nanomedicine ; 33: 102368, 2021 04.
Article in English | MEDLINE | ID: mdl-33548477

ABSTRACT

The photodynamic anticancer activity of a photosensitizer can be further increased by co-administration of a flavonoid. However, this requires that both molecules must be effectively accumulated at the tumor site. Hence, in order to enhance the activity of zinc phthalocyanine (ZnPc, photosensitizer), it was co-encapsulated with quercetin (QC, flavonoid) in lipid polymer hybrid nanoparticles (LPNs) developed using biodegradable & biocompatible materials and prepared using a single-step nanoprecipitation technique. High stability and cellular uptake, sustained release, inherent fluorescence, of ZnPC were observed after encapsulation in the LPNs, which also showed a higher cytotoxic effect in breast carcinoma cells (MCF-7) compared to photodynamic therapy (PDT) alone. In vivo studies in tumor-bearing Sprague Dawley rats demonstrated that the LPNs were able to deliver ZnPc and QC to the tumor site with minimal systemic toxicity and increased antitumor effect. Overall, the photodynamic effect of ZnPc was synergized by QC. This strategy could be highly beneficial for cancer management in the future while nullifying the side effects of chemotherapy.


Subject(s)
Antineoplastic Agents/chemistry , Biocompatible Materials/chemistry , Isoindoles/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Organometallic Compounds/chemistry , Photosensitizing Agents/chemistry , Quercetin/chemistry , Zinc Compounds/chemistry , Animals , Antineoplastic Agents/administration & dosage , Biocompatible Materials/administration & dosage , Cell Membrane Permeability , Delayed-Action Preparations , Drug Liberation , Humans , Isoindoles/administration & dosage , MCF-7 Cells , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/radiotherapy , Organometallic Compounds/administration & dosage , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Quercetin/administration & dosage , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Zinc Compounds/administration & dosage
9.
Mol Pharm ; 17(7): 2473-2486, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32496783

ABSTRACT

The currently available systemic chemotherapy for treating breast cancer often results in serious systemic side effects and compromises patient compliance. The distinct anatomical features of human breasts (e.g., embryological origin of breast skin, highly developed internal lymphatic and venous circulation, and the presence of mammary fat layers) help in preferential accumulation of drugs into breasts after topical application on breast region. This unique feature is termed as localized transdermal delivery which could be utilized for effectively delivering anticancer agents to treat breast cancer and reducing the systemic side effects by limiting their presence in blood. However, the clinical effectiveness of this drug delivery approach is highly limited by barrier properties of skin reducing the permeation of anticancer drugs. In the present work, we have developed high permeation vesicles (HPVs) using phospholipids and synergistic combination of permeation enhancers (SCOPE) to improve the skin permeation of drugs. Docetaxel (DTX) was used as a model drug for hypothesis testing. The optimized SCOPE mixture composed of sodium oleate/sodium lauryl ether sulfate/propylene glycol in 64:16:20% w/w ratio. DTX HPVs were prepared using phospholipid: SCOPE, 8:2% w/w ratio. DTX HPVs exhibited as a uniform deformable vesicles with size range 124.2 ± 7.6 nm, significantly improved skin permeation profile, and sustained drug release until 48 h. Superior vesicle deformability, better vesicle membrane fluidization, and SCOPE mediated enhancement in skin fluidization were the prime factors behind enhancement of DTX permeation. The improved cellular uptake, reduced IC50 values, and higher apoptotic index of DTX HPVs in MCF-7 and MDA-MB-231 cells ensured the therapeutic effectiveness of HPV based therapy. Also, HPVs were found to be predominantly internalized inside cells through clathrin and caveolae-dependent endocytic pathways. Bioimaging analysis in mice confirmed the tumor penetration potential and effective accumulation of HPVs inside tumors after topical application. In vivo studies were carried out in comparison with marketed intravenous DTX injection (Taxotere) to compare the effectiveness of topical chemotherapy. The topical application of DTX HPV gel in tumor bearing mice resulted in nearly 4-fold tumor volume reduction which was equivalent to intravenous Taxotere therapy. Toxicity analysis of DTX HPV gel in comparison with intravenous Taxotere dosing showcased remarkably lower levels of toxicity biomarkers (aspartate transaminase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), and creatinine), indicating improved safety of topical chemotherapy. Overall results warranted the effectiveness of topical DTX chemotherapy to reduce tumor burden with substantially reduced risk of systemic toxicities in breast cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Docetaxel/administration & dosage , Drug Carriers/chemistry , Drug Compounding/methods , Nanoparticles/chemistry , Administration, Cutaneous , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Breast Neoplasms/pathology , Cell Survival/drug effects , Disease Models, Animal , Docetaxel/blood , Docetaxel/pharmacokinetics , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Particle Size , Permeability/drug effects , Rats , Rats, Sprague-Dawley , Skin/drug effects , Skin/metabolism , Swine , Tissue Distribution , Transplantation, Homologous , Treatment Outcome , Tumor Burden/drug effects
10.
Nanomedicine ; 24: 102147, 2020 02.
Article in English | MEDLINE | ID: mdl-31884040

ABSTRACT

Mycophenolic acid (MPA) has promising anticancer properties; however, it has limited clinical applications in vivo due to hydrophobic nature, high first-pass metabolism, lack of targeting, etc. These associated problems could be addressed by developing a suitable delivery vehicle, inhibiting the first-pass metabolism and additive/synergistic pharmacodynamic effect. Thus, MPA loaded highly stable lipid polymer hybrid nanoparticles (LPNs) were developed and investigated with the combination of quercetin (QC), a CYP 450 inhibitor cum anticancer. LPNs of MPA and QC (size; 136 ±â€¯12 and 176 ±â€¯35 nm, respectively) demonstrated higher cellular uptake and cytotoxicity of combination therapy (MPA-LPN + QC-LPN) compared to individual congeners in MCF-7 cells. In vivo pharmacokinetics demonstrated 2.17 fold higher T1/2 value and significantly higher pharmacodynamic activity in case of combination therapy compared to free MPA. In nutshell, the combinatory therapeutic regimen of MPA and QC could be a promising approach in improved breast cancer management.


Subject(s)
Lipids/chemistry , Mycophenolic Acid/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Quercetin/chemistry , Animals , Antioxidants/chemistry , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Survival/drug effects , Drug Delivery Systems/methods , Female , Humans , MCF-7 Cells , Mycophenolic Acid/therapeutic use , Quercetin/therapeutic use , Spectroscopy, Fourier Transform Infrared
11.
J Mater Sci Mater Med ; 31(10): 87, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33037467

ABSTRACT

Tryptophan is an amino acid required by all life forms for protein synthesis and other important metabolic functions. It is metabolized in the body using the kynurenine pathway which involves the enzyme indoleamine 2,3 dioxygenase (IDO) and its transport is regulated through the L-type amino acid transporters (LAT 1). IDO and LAT 1 are found to be overexpressed in many cancers i.e., ovarian, lung colorectal etc. In this study we have used this specific interaction as the basis for designing diagnostic agent based on iron oxide nanoparticles which can specifically target the IDO/LAT 1 over expressing tumors. We have conjugated tryptophan to the surface of super-paramagnetic nanoparticles chemically using 3-aminopropyltrimethoxysilane as a linker. The synthesized tryptophan conjugated magnetic nano-conjugate has been characterized using FTIR, UV-Vis, TEM for its shape size, charge and NMR and Mass for conjugation. The magnetization studies show decrease in the magnetic behavior after conjugation however the desired super-paramagnetic property is still retained as shown by the signature sigmoidal B-H curve. The nano-conjugate shows minimal cytotoxicity over 24 h as shown by the SRB assay in two cell lines A-549, MCF-7. Using 99mTc labeling the biodistribution and the blood kinetics of the magnetic nano-conjugate was evaluated. The study highlights the suitability of the designed magnetic Nano bioconjugate as a potential bimodal diagnostic agent.


Subject(s)
Amino Acids/chemistry , Ferric Compounds/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Magnetite Nanoparticles/chemistry , Nanomedicine/methods , Neoplasms/therapy , Tryptophan/chemistry , A549 Cells , Animals , Biological Transport , Cell Line, Tumor , Humans , Kinetics , MCF-7 Cells , Magnetic Resonance Spectroscopy , Mice , Microscopy, Electron, Transmission , Rabbits , Radionuclide Imaging , Rhodamines/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Technetium/chemistry
12.
J Microencapsul ; 37(1): 14-28, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31718364

ABSTRACT

Aim: MUC-1 lipopeptide vaccine exhibited immense potential in the treatment of non-small cell lung cancer (NSCLC) in both preclinical and clinical trials. However, it lacks triggering of mucosal immunity at the site of action. Therefore, in present investigation, MUC-1 peptide-loaded poly(lactide-co-glycolide) nanoparticles (MUC-1 peptide-PLGA-NPs) and MUC-1 peptide-loaded poly(lactide-co-glycolide) non-aggregated nanoparticles (MUC-1 peptide-PLGA-NA-NPs) using Central Composite Design (CCD) were customised.Methods and Results: The mean particle size of MUC-1 peptide PLGA-NPs was estimated to be 176.7 ± 32.7 nm, significantly (p < 0.05) higher than 100.3 ± 24.3 nm of MUC-1 peptide-PLGA-NA-NPs. Furthermore, integrity and stability of MUC-1 were maintained in MUC-1 peptide PLGA-NA-NPs. MUC-1 peptide-PLGA-NA-NPs exhibited augmented cellular uptake in mouse RAW264.7 macrophages preferably by clathrin-mediated endocytosis pathway as compared to phagocytosis followed by MUC-1-peptide PLGA-NPs owing to size ≤100 nm, and spherical shape.Conclusion: MUC-1 peptide-PLGA-NA-NPs may be a potential candidate to study antitumor potential in xenograft model of NSCLC through inhalation route of administration.


Subject(s)
Antigen-Presenting Cells/immunology , Cancer Vaccines/administration & dosage , Drug Carriers/chemistry , Mucin-1/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Animals , Cancer Vaccines/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Endocytosis , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Macrophages/immunology , Mice , Nanoparticles/chemistry , Phagocytosis , RAW 264.7 Cells
13.
Mol Pharm ; 16(11): 4519-4529, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31509418

ABSTRACT

Amphotericin B (AmB) is one of the most effective drugs used in the treatment of leishmaniasis and systemic fungal infections. Considering the global burden of leishmaniasis, ∼90% of disease cases occur in developing countries, suggestive of the need for an affordable AmB therapy. However, owing to the physicochemical properties of AmB, all the clinically available formulations must be administered by intravenous route, thereby creating a significant hurdle in patients' access to AmB due to pharmacoeconomic considerations. We have previously demonstrated that lipid conjugation (e.g., fatty acids) to AmB significantly decreases the toxicity of resulting prodrug by a favorable alteration in the aggregation pattern. The hypothesis of the present work was to investigate the potential of the previously established AmB-lipid conjugate [AmB-oleyl conjugate (AmB-OA)] in improving the physicochemical properties such as gastric instability and lower intestinal permeability that otherwise limits the oral delivery of AmB. The synthesized AmB-OA conjugate was remarkably stable at gastric pH in contrast to AmB and exhibited significantly higher permeation across the Caco-2 monolayer (indicative of intestinal permeability). Mechanistic studies revealed that AmB-OA retained an equivalent antifungal activity. Also, AmB-OA was found to interact preferentially with intracellular membranes of Saccharomyces cerevisiae, while AmB interacted with the plasma membrane. The results of Caco-2 monolayer permeation experiments were further confirmed by in vivo pharmacokinetics, which showed that AmB-OA exhibited a 3.13-fold increase in the Cmax and a 4.88-fold increase in AUCTot as compared to AmB. In conclusion, the lipid conjugation approach may provide an effective solution for current challenges in designing drug delivery systems intended for oral AmB therapy.


Subject(s)
Amphotericin B/chemistry , Amphotericin B/pharmacokinetics , Fatty Acids/chemistry , Gastrointestinal Tract/metabolism , Administration, Oral , Amphotericin B/pharmacology , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Biological Availability , Caco-2 Cells , Cell Line, Tumor , Cell Membrane/metabolism , Chemistry, Pharmaceutical/methods , Drug Delivery Systems/methods , Humans , Lipids/chemistry , Male , Rats, Sprague-Dawley , Saccharomyces cerevisiae/drug effects
14.
Pharm Res ; 36(11): 160, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31520196

ABSTRACT

PURPOSE: Bortezomib (BTZ) is a proteasome inhibitor used for multiple myeloma and mantle cell lymphoma treatment. BTZ's aqueous in solubility is the main hindrance in its successful development as a commercial formulation. The main objective of the present study is to develop and characterize folic acid-glycine-poly-L-lactic acid (FA-Gly4-PLA) based nanoformulation (NPs) to improve solubility and efficacy of BTZ. METHODS: BTZ loaded FA-Gly4-PLA NPs were prepared and characterized for size, zeta potential, in vitro studies such as release, kinetics modeling, hemolytic toxicity, and cell line-based studies (Reactive Oxygen Species: ROS and cytotoxicity). RESULTS: BTZ loaded NPs (BTZ-loaded FA-Gly4-PLA) and blank NPs (FA-Gly4-PLA) size, zeta, and PDI were found to be 110 ± 8.1 nm, 13.7 ± 1.01 mV, 0.19 ± 0.03 and 198 ± 9.01 nm, 8.63 ± 0.21 mV, 0.21 ± 0.08 respectively. The percent encapsulation efficiency (% EE) and percent drug loading (% DL) of BTZ loaded FA-Gly4-PLA NPs was calculated to be 78.3 ± 4.1 and 12.38 ± 2.1. The Scanning Electron Microscopy (SEM) showed that NPs were slightly biconcave in shape. The in vitro release of BTZ from FA-Gly4-PLA NPs resulted in the sustained manner. The prepared NPs were less hemolytic than BTZ. CONCLUSIONS: BTZ loaded Gly4-PLA NPs apoptotic index was found to be much higher than BTZ but lesser than BTZ loaded FA-Gly4-PLA against breast cancer cell lines (MDA-MB-231). ROS intracellular assessment assay indicated that BTZ and BTZ loaded FA-Gly4-PLA NPs exhibited higher ROS production. Conclusively, the BTZ loaded FA-Gly4-PLA NPs were able to encapsulate more BTZ than BTZ loaded Gly4-PLA NPs and were found to be more effective as per as in vitro anti-cancer effect is concerned.


Subject(s)
Antineoplastic Agents/administration & dosage , Bortezomib/administration & dosage , Drug Delivery Systems , Folic Acid/chemistry , Glycine/chemistry , Nanocapsules/chemistry , Polyesters/chemistry , Antineoplastic Agents/chemistry , Bortezomib/chemistry , Breast Neoplasms/drug therapy , Cell Line, Tumor , Drug Compounding/methods , Female , Humans
15.
Bioorg Med Chem Lett ; 29(13): 1565-1571, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31078412

ABSTRACT

Secondary acquired mutant EGFR (L858R-T790M) overexpressed NSCLC forms one of the prevalent form of resistant NSCLC. Another subset of resistant NSCLC includes amplified cMET in mutant EGFR derived tumours. Thus, in continuation to our previous work on these two major targets of resistant NSCLC, i.e., EGFR (L858R-T790M) and cMET, we are hereby reporting reversible inhibitors of these kinases. Out of 11 lead molecules reported in our previous study, we selected triazolo-pyrimidone (BAS 09867482) scaffold for further development of small molecule dual and reversible inhibitors. Analogues of lead with different substituents on the side ring were sketched and docked in both the target kinases, followed by molecular dynamic simulations. Analogues maintaining hydrophobic interaction with M790 in secondary acquired mutant EGFR (L858R-T790M) were selected and duly synthesized. In vitro biochemical evaluation of these molecules against EGFR (L858R-T790M) and cMET kinase, along with EGFR (L858R) kinase disclosed that three molecules were having significant dual kinase inhibitory potential with IC50 values well below 100 nM. Further, in vitro anti-proliferative assay against three cell lines (A549, A431 and H460) was performed. Out of all, two compounds were having significant potency against these cell lines.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Molecular Dynamics Simulation
16.
AAPS PharmSciTech ; 20(3): 131, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30815757

ABSTRACT

In the present study, stable chitosan nanoparticles (Ch-NPs) were developed using the ionotropic gelation method, where poly(sodium 4-styrenesulfonate) (PSS) was used as a cross-linking agent while polyglutamic acid (PGA) for functionalization to improve the oral uptake through calcium-sensing receptors and amino acid transporters present in intestinal epithelium. Formulation was optimized by the design of experiments (DoE) approach using a three-level central composite design and characterized for in vitro parameters such as morphology, particle size, polydispersity index (PDI), entrapment efficiency and zeta potential. Morphological analysis demonstrated the formation of spherical NPs with particle size, zeta potential, and entrapment efficiency in the range of 210 nm ± 2.8 nm, 18.1 mV ± 0.14 mV, and 85.9% ± 0.28%, respectively. The developed NPs exhibited sustained release at different pH conditions and almost threefold higher uptake in comparison with non-functionalized NPs in Caco-2 cell uptake studies. In vivo studies in diabetic animals demonstrated low levels of plasma glucose for almost 24 h. Pharmacological availability (PA) of insulin administered through Ch-PSS-PGA NPs (17.28 ± 0.9) was significantly higher as compared to that of insulin administered through control NPs, i.e., Ch-PGA NPs (10.9 ± 1.5) and Ch-PSS NPs (12.9 ± 1.8). Data on hand suggest the ability of the developed NPs in overcoming the poor stability and, thus, poor therapeutic efficacy following oral administration.


Subject(s)
Chitosan/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/therapeutic use , Polyglutamic Acid/chemistry , Administration, Oral , Animals , Blood Glucose/metabolism , Caco-2 Cells , Cross-Linking Reagents , Delayed-Action Preparations , Diabetes Mellitus, Experimental/drug therapy , Drug Carriers , Humans , Hydrogen-Ion Concentration , Intestinal Absorption , Intestinal Mucosa/metabolism , Male , Nanoparticles , Particle Size , Rats , Rats, Sprague-Dawley
17.
AAPS PharmSciTech ; 20(2): 43, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30610392

ABSTRACT

Among many, the oral route of delivery is considered to be the most favorable route with the highest patient compliance. The main issue with oral delivery is the environmental vulnerability of gastro intestinal tract (G.I.T). The bioavailability could further decrease when drug has poor aqueous solubility and permeability through biological membrane. This drawback could be resolved by employing drug-phospholipid complex strategy, as they utilize mechanism which is similar to the absorption mechanism of nutritional constituents form G.I.T. The drug-phospholipid complexes are considered ideal for oral delivery as they are biodegradable and non-toxic, which enable them to be employed as solubilizer, emulsifier, and as a matrix forming excipient for dugs with poor solubility and/or permeability. The present review compiles the basic know how about the phospholipids and the mechanism through which it improves the bioavailability of drugs. Further, it also compiles the crucial formulation aspects and methods of preparations of drug-phospholipid complex along with its physical and in silico characterization techniques. The increase in number of recent reports involving the utilization of drug-phospholipid complex to improve oral bioavailability of drugs thus explains how vital the strategy is for a successful oral delivery.


Subject(s)
Drug Delivery Systems , Phospholipids/chemistry , Administration, Oral , Animals , Biological Availability , Humans , Permeability , Solubility
18.
AAPS PharmSciTech ; 20(2): 41, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30610658

ABSTRACT

Oral drug delivery route is one of the most convenient and extensively utilised routes for drug administration. But there exists class of drugs which exhibit poor bioavailability on oral drug administration. Designing of drug-lipid conjugates (DLCs) is one of the rationale strategy utilised in overcoming this challenge. This review extensively covers the various dimensions of drug modification using lipids to attain improved oral drug delivery. DLCs help in improving oral delivery by providing benefits like improved permeability, stability in gastric environment, higher drug loading in carriers, formation of self-assembled nanostructures, etc. The clinical effectiveness of DLCs is highlighted from available marketed drug products along with many DLCs in phase of clinical trials. Conclusively, this drug modification strategy can potentially help in augmenting oral drug delivery in future.


Subject(s)
Drug Delivery Systems , Lipids/chemistry , Administration, Oral , Animals , Drug Delivery Systems/methods , Humans , Nanostructures/chemistry , Permeability
19.
AAPS PharmSciTech ; 20(5): 186, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31065931

ABSTRACT

Surfactants occupy an important place owing to their wide application, but primarily compromised due to its toxicity issues. This raises the need for exploration of newer surfactants with increased biocompatibility. Novel fatty acid- and amino acid-based surfactants were prepared using standard carbodiimide chemistry. Pyrene assay was implemented to confirm the amphiphilic nature of the surfactants and to calculate their CMC (critical micellar concentration). In vitro hemolytic and cell culture study in MCF-7 and HEK cell line were done to check the in vitro biocompatibility of the developed surfactants in comparison to marketed surfactants Triton X-100 and Tween ® 80. In vivo biocompatibility test in female Swiss albino mice was carried out in comparison to marketed surfactants with respect to serum markers, organ histology, and RBC morphology. Surfactant synthesis provided more than 60% yield in all the conjugates. Pyrene assay concluded the amphiphilic nature of the surfactants with lowest CMC of 0.083% w/v in the case of stearic acid and valine conjugate. In vitro hemolytic and cell culture study depicted highest biocompatibility in vitro as compared to marketed surfactants. Similar results were obtained in in vivo biocompatibility with respect to AST (aspartate transaminase), ALT (alanine transaminase), BUN (blood urea nitrogen), and creatinine serum levels and histology of spleen, liver, and kidney in comparison to marketed surfactants Triton X-100 and Tween ® 80. The developed surfactant also depicted least RBC morphology changes in vivo. Stearic acid valine conjugate thus depicted potential for further application in formulation development replacing the commercially available surfactants.


Subject(s)
Amino Acids/administration & dosage , Amino Acids/toxicity , Biocompatible Materials/administration & dosage , Biocompatible Materials/toxicity , Fatty Acids/administration & dosage , Fatty Acids/toxicity , Surface-Active Agents/administration & dosage , Surface-Active Agents/toxicity , Amino Acids/chemistry , Animals , Biocompatible Materials/chemistry , Drug Design , Fatty Acids/chemistry , Female , Hemolysis/drug effects , Humans , MCF-7 Cells , Mice , Micelles , Rats , Rats, Sprague-Dawley , Surface-Active Agents/chemistry
20.
Mol Pharm ; 15(5): 1917-1927, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29620908

ABSTRACT

In eutectic, a lamellar microstructure offers better tableting than that of the nonreacted physical mixture. However, bulk deformation remains elusive in two binary eutectics. We hypothesized that the binary eutectic of a drug with different components, having different H-bonding dimensionalities and crystal structure, shall allow the understanding of the structural integrity in the bulk deformation behavior. The shearing molecular solid (FXT Q) shared a common composition with the viscoelastic crystal (ASP I) and brittle (PCM I), forming EM-1 (ϕ1 = 41.27:58.73% w/w) and EM-2 (ϕ2 = 41.10:58.90% w/w), respectively. The excess thermodynamic functions were contributed by high energy microstructures (nonbonding interactions) along incoherent phase boundaries (visualized under CLSM). The energy dispersive analysis enabled the recognition of the relative distribution of higher atoms over the heterogeneous surface. EM-1 (FXT Q-ASP I) demonstrated higher compressibility, tensile strength, and compactibility (CTC profile) compared to those of EM-2 (FXT Q-PCM I) over a range of applied compaction pressures. The lower true yield strength (σ0(EM-1) = 138.66 MPa) of EM-1 as compared to that of EM-2 (σ0(EM-2) = 166.66 MPa) suggested a better deformation performance and incipient plasticity quantified from the "out-of-die" Heckel analysis. From Ryshkewitch analysis, the tensile strength at zero porosity (τ01 = 3.83 MPa) was predicted to be higher for EM-1 than EM-2 (τ02 = 2.54 MPa). The higher bonding strength of EM-1 was contributed to the additional influence of true density and isotropic van der Waals interactions of ASP I (0D). In contrast, EM-2 demonstrated lower compressibility and compactibility, having herringbone molecular packing of PCM I (1D) with a common shearing component (FXT Q (1D)). This study confirmed that the intrinsic deformational and chemical nature of the second component defined the compressibility and compactibility tendency to a greater extent in the tableting performance of conglomerates of crystalline solid solution.


Subject(s)
Tablets/chemistry , Compressive Strength/drug effects , Crystallization/methods , Porosity , Pressure , Tensile Strength/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL