Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Adv Mater ; 36(26): e2312219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608672

ABSTRACT

Targeting the competitive-cooperative relationships among tumor cells and various immune cells can efficiently reverse the immune-dysfunction microenvironment to boost the immunotherapies for the triple-negative breast cancer treatment. Hence, a bacterial outer membrane vesicle-based nanocomplex is designed for specifically targeting malignant cells and immune cells to reconcile the relationships based on metabolic-immune crosstalk. By uniquely utilizing the property of charge-reversal polymers to realize function separation, the nanocomplexes could synergistically regulate tumor cells and immune cells. This approach could reshape the immunosuppressive competition-cooperation pattern into one that is immune-responsive, showcasing significant potential for inducing tumor remission in TNBC models.


Subject(s)
Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Humans , Animals , Cell Line, Tumor , Mice , Tumor Microenvironment/drug effects , Female , Immunotherapy , Nanoparticles/chemistry
2.
J Phys Chem B ; 124(42): 9438-9455, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32935990

ABSTRACT

Performing dynamic off-lattice multicanonical Monte Carlo simulations, we study the statics, dynamics, and scission-recombination kinetics of a self-assembled in situ-polymerized polydisperse living polymer brush (LPB), designed by surface-initiated living polymerization. The living brush is initially grown from a two-dimensional substrate by end-monomer polymerization-depolymerization reactions through seeding of initiator arrays on the grafting plane which come in contact with a solution of nonbonded monomers under good solvent conditions. The polydispersity is shown to significantly deviate from the Flory-Schulz type for low temperatures because of pronounced diffusion limitation effects on the rate of the equilibration reaction. The self-avoiding chains take up fairly compact structures of typical size Rg(N) ∼ Nν in rigorously two-dimensional (d = 2) melt, with ν being the inverse fractal dimension (ν = 1/d). The Kratky description of the intramolecular structure factor F(q), in keeping with the concept of generalized Porod scattering from compact particles with fractal contour, discloses a robust nonmonotonic fashion with qdF(q) ∼ (qRg)-3/4 in the intermediate-q regime. It is found that the kinetics of LPB growth, given by the variation of the mean chain length, follows a power law ⟨N(t)⟩ ∝ t1/3 with elapsed time after the onset of polymerization, whereby the instantaneous molecular weight distribution (MWD) of the chains c(N) retains its functional form. The variation of ⟨N(t)⟩ during quenches of the LPB to different temperatures T can be described by a single master curve in units of dimensionless time t/τ∞, where τ∞ is the typical (final temperature T∞-dependent) relaxation time which is found to scale as τ∞ ∝ ⟨N(t = ∞)⟩5 with the ultimate average length of the chains. The equilibrium monomer density profile ϕ(z) of the LPB varies as ϕ(z) ∝ ϕ-α with the concentration of segments ϕ in the system and the probability distribution c(N) of chain lengths N in the brush layer scales as c(N) ∝ N-τ. The computed exponents α ≈ 0.64 and τ ≈ 1.70 are in good agreement with those predicted within the context of the Diffusion-Limited Aggregation theory, α = 2/3 and τ = 7/4.

3.
ACS Omega ; 5(2): 1052-1061, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31984261

ABSTRACT

In this work, size-tunable polydimethylsiloxane (PDMS) microparticles are fabricated from a high-viscosity oil phase using a facile coflowing capillary microfluidic device and optimized aqueous phase composition. The dispersity of the microparticle size is tuned by engineering of the viscosity of the continuous phase and flow rate ratio that leads us to achieve monodisperse microparticles. Regarding the high potential of the PDMS microparticles for optical applications, efficient environmentally durable perovskite-based UV sensors are fabricated employing the designed size-tunable microparticles. Surprisingly, the UV sensors comprising CH3NH3PbBr3 perovskite quantum dots as UV-sensitive nanocrystals embedded in transparent PDMS microparticles are water resistant because of the high hydrophobicity of PDMS. Remarkably, the UV sensors show a photoluminescence quantum yield as high as 75% that can be employed effortlessly as reusable leak detectors in different fluidic working systems.

4.
J Biomater Sci Polym Ed ; 30(15): 1433-1453, 2019 10.
Article in English | MEDLINE | ID: mdl-31290371

ABSTRACT

In this work, well-defined poly(dimethylsiloxane)-b-poly(oligo (ethylene glycol) methacrylate) (PDMS-b-POEGMA) amphiphilic block copolymers were synthesized and their effect on human dermal fibroblast were investigated. Anionic ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP) were used to synthesis the block copolymers. The molecular weight of synthesized copolymers ranged from 1000 to 2300 Da by changing the number of both PDMS and POEGMA units. It was found that the copolymer having low molecular weight decreased the fibroblast viability and proliferation by inducing apoptosis. It was proved by flow cytometry and TUNEL assay that human dermal fibroblast experienced apoptosis after exposure to synthesized amphiphilic copolymers. The results of this work suggest the use of PDMS-b-POEGMA amphiphilic copolymers with low molecular weight for hypertrophic scars remediation.


Subject(s)
Cell Survival/drug effects , Dimethylpolysiloxanes/chemistry , Fibroblasts/cytology , Fibroblasts/drug effects , Hydrophobic and Hydrophilic Interactions , Nylons/chemistry , Polyethylene Glycols/chemistry , Skin/cytology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects , Humans , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL