Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Soft Matter ; 14(47): 9522-9527, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30462134

ABSTRACT

Herein, we report the fabrication process and the investigation of mechanically stable, flexible and free-standing polymeric membranes with two-level apertures. By using overlapped oxygen inhibition layers (OILs) with variation in diameters of the micro-sized supporting layer, we successfully fabricated the mechanically stable and free-standing polymeric membrane with micro/nano two-level apertures. The nano aperture membrane was stably sustained on the micro aperture membrane with a diameter of 50 µm and 100 µm, but was torn off in the case of 300 µm and 500 µm sized supporting layers. To analyze the results, we propose a simple model to set the criteria of the geometrical features which are mechanically stable during the demolding process. It is worth noting that an appropriate material modulus, length, and thickness of the membrane are required for designing and achieving the robust free-standing hierarchical polymeric membrane.

2.
Small ; 12(28): 3764-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27273859

ABSTRACT

The unidirectional clustering induced by capillary force of drying liquids between pillars is investigated and a theoretical model to set a criterion of the unidirectional clustering of the slanted nanopillars is proposed.

3.
Small ; 12(18): 2443-9, 2016 05.
Article in English | MEDLINE | ID: mdl-26990492

ABSTRACT

A moth-eye nanostructured mp-TiO2 film using conventional lithography, nano-imprinting and polydimethyl-siloxane (PDMS) stamping methods is demonstrated for the first time. Power conversion efficiency of the moth-eye patterned perovskite solar cell is improved by ≈11%, which mainly results from increasing light harvesting efficiency by structural optical property.

4.
Nanotechnology ; 27(5): 055403, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26751935

ABSTRACT

We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.

5.
Adv Mater ; 36(14): e2308288, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38161259

ABSTRACT

In a hydrogen fuel cell, an electrolyte membrane conducts protons, but blocks electrons, hydrogen molecules, and oxygen molecules. The fuel cell often runs unsteadily, resulting in fluctuating water production, causing the membrane to swell and contract. The cyclic deformation can cause fatigue crack growth. This paper describes an approach to develop a fatigue-resistant polymer electrolyte membrane. The membrane is prepared by forming an interpenetrating network of a plastic electrolyte and a rubber. The former conducts protons, and the latter enhances fatigue resistance. The introduction of the rubber modestly reduces electrochemical performance, but significantly increases fatigue threshold and lifespan. Compared to pristine plastic electrolyte, Nafion, an interpenetrating network of Nafion and perfluoropolyether (PFPE) reduces the maximum power density by 20%, but increases the fatigue threshold by 175%. Under the wet/dry accelerated stress test, the fuel cell with the Nafion-PFPE membrane has a lifespan 1.7 times that of a fuel cell with the Nafion membrane.

6.
Adv Sci (Weinh) ; 11(12): e2307073, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225690

ABSTRACT

Polymer electrolyte membrane fuel cells (PEMFCs) suffer from severe performance degradation when operating under harsh conditions such as fuel starvation, shut-down/start-up, and open circuit voltage. A fundamental solution to these technical issues requires an integrated approach rather than condition-specific solutions. In this study, an anode catalyst based on Pt nanoparticles encapsulated in a multifunctional carbon layer (MCL), acting as a molecular sieve layer and protective layer is designed. The MCL enabled selective hydrogen oxidation reaction on the surface of the Pt nanoparticles while preventing their dissolution and agglomeration. Thus, the structural deterioration of a membrane electrode assembly can be effectively suppressed under various harsh operating conditions. The results demonstrated that redesigning the anode catalyst structure can serve as a promising strategy to maximize the service life of the current PEMFC system.

7.
RSC Adv ; 13(30): 20486-20494, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37435370

ABSTRACT

The pressure-driven liquid flow controller is one of the key components in diverse applications including microfluidic systems, biomedical drug injection devices, and pressurized water supply systems. Electric feedback loop based flow controllers are fine-tunable but expensive and complex. The conventional safety valves based on spring force are simple and low cost, but their diverse application is limited due to their fixed pressure range, size, and shape. Herein, we propose a simple and controllable liquid-flowing system combining a closed liquid reservoir and an oil-gated isoporous membrane (OGIM). The ultra-thin and flexible OGIM acts as an immediately responsive and precisely controlled gas valve to maintain internal pneumatic pressure as designed to induce constant liquid flow. The oil filling apertures act as a gate for gas flow depending on the applied pressure and the threshold (gating) pressure of the gate is determined by the surface tension of the oil and the gate diameter. It is confirmed that the gating pressure is precisely controlled by varying the gate diameter, which agrees with the theoretically estimated pressures. Based on stably maintained pressure due to the function of OGIM, the constant liquid flow rate is achieved even with the high gas flow rate.

8.
Adv Mater ; 35(46): e2302666, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37548180

ABSTRACT

Atomically dispersed and nitrogen coordinated iron catalysts (Fe-NCs) demonstrate potential as alternatives to platinum-group metal (PGM) catalysts in oxygen reduction reaction (ORR). However, in the context of practical proton exchange membrane fuel cell (PEMFC) applications, the membrane electrode assembly (MEA) performances of Fe-NCs remain unsatisfactory. Herein, improved MEA performance is achieved by tuning the local environment of the Fe-NC catalysts through defect engineering. Zeolitic imidazolate framework (ZIF)-derived nitrogen-doped carbon with additional CO2 activation is employed to construct atomically dispersed iron sites with a controlled defect number. The Fe-NC species with the optimal number of defect sites exhibit excellent ORR performance with a high half-wave potential of 0.83 V in 0.5 M H2 SO4 . Variation in the number of defects allows for fine-tuning of the reaction intermediate binding energies by changing the contribution of the Fe d-orbitals, thereby optimizing the ORR activity. The MEA based on a defect-engineered Fe-NC catalyst is found to exhibit a remarkable peak power density of 1.1 W cm-2 in an H2 /O2 fuel cell, and 0.67 W cm-2  in an H2 /air fuel cell, rendering it one of the most active atomically dispersed catalyst materials at the MEA level.

9.
Adv Mater ; 35(43): e2204902, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36222387

ABSTRACT

Over the past few decades, considerable advances have been achieved in polymer electrolyte membrane fuel cells (PEMFCs) based on the development of material technology. Recently, an emerging multiscale architecturing technology covering nanometer, micrometer, and millimeter scales has been regarded as an alternative strategy to overcome the hindrance to achieving high-performance and reliable PEMFCs. This review summarizes the recent progress in the key components of PEMFCs based on a novel architecture strategy. In the first section, diverse architectural methods for patterning the membrane surface with random, single-scale, and multiscale structures as well as their efficacy for improving catalyst utilization, charge transport, and water management are discussed. In the subsequent section, the electrode structures designed with 1D and 3D multiscale structures to enable low Pt usage, improve oxygen transport, and achieve high electrode durability are elucidated. Finally, recent advances in the architectured transport layer for improving mass transportation including pore gradient, perforation, and patterned wettability for gas diffusion layer and 3D structured/engineered flow fields are described.

10.
Membranes (Basel) ; 12(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36363628

ABSTRACT

For further commercializing proton-exchange membrane fuel cells, it is crucial to attain long-term durability while achieving high performance. In this study, a strategy for modifying commercial Nafion membranes by introducing ultrathin multiwalled carbon nanotubes (MWCNTs)/CeO2 layers on both sides of the membrane was developed to construct a mechanically and chemically reinforced membrane electrode assembly. The dispersion properties of the MWCNTs were greatly improved through chemical modification with acid treatment, and the mixed solution of MWCNTs/CeO2 was uniformly prepared through a high-energy ball-milling process. By employing a spray-coating technique, the ultrathin MWCNTs/CeO2 layers were introduced onto the membrane surfaces without any agglomeration problem because the solvent rapidly evaporated during the layer-by-layer stacking process. These ultrathin and highly dispersed MWCNTs/CeO2 layers effectively reinforced the mechanical properties and chemical durability of the membrane while minimizing the performance drop despite their non-ion-conducting properties. The characteristics of the MWCNTs/CeO2 layers and the reinforced Nafion membrane were investigated using various in situ and ex situ measurement techniques; in addition, electrochemical measurements for fuel cells were conducted.

11.
ACS Appl Mater Interfaces ; 14(45): 50956-50965, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36327306

ABSTRACT

Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane-electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements.

12.
ACS Appl Mater Interfaces ; 13(47): 56014-56024, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34783545

ABSTRACT

The catalyst layer's high durability is essential in commercializing polymer electrolyte membrane fuel cells (PEMFCs), particularly for vehicle applications, because their frequent on/off operation can induce carbon corrosion, which affects surface properties and morphological characteristics of the carbon and results in aggregation and detachment of Pt nanoparticles on the carbon surface. Herein, to address the carbon corrosion problem while delivering a high-performance PEMFC, polydimethylsiloxane (PDMS) with high gas permeability, chemical stability, and hydrophobicity was employed to protect the catalyst layer from carbon corrosion and improve the mass transport. Because the catalyst slurry using alcohol-based solvents showed low compatibility with nonpolar solvents of the PDMS solution, a parallel two-nozzle system with separated solution reservoirs was developed by modifying a conventional three-dimensional printing machine. To determine the optimal PDMS amount in the cathode catalyst layer, PDMS solution concentration was varied by quantitatively controlling the PDMS amount coated on the electrode layer. Finally, the PEMFC with the PDMS-modified cathode of 0.1 mgPDMS cm-2 loading showed enhanced durability due to increased electrochemical surface and maximum power density by 37.2 and 21.7%, respectively, after the accelerated stress test. Furthermore, an improvement in the initial performance from enhanced water management was observed compared to those of PEMFCs with a conventional electrode.

13.
Polymers (Basel) ; 13(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34960911

ABSTRACT

A polymeric stencil with microdot apertures made by using polydimethylsiloxane (PDMS) molds with pillar patterns has many advantages, including conformal contact, easy processability, flexibility, and low cost compared to conventional silicon-based membranes. However, due to the inherent deformability of PDMS materials in response to external pressure, it is challenging to construct structurally stable stencils with high structural fidelity. Here, we propose a design rule on the buckling pressure for constructing polymeric stencils without process failure. To investigate the critical buckling pressure (Pcr), stencils are fabricated by using different PDMS molds with aspect ratio variations (AR: 1.6, 2.0, 4.0, and 5.3). By observing the buckled morphology of apertures, the structures can be classified into two groups: low (AR 1.6 and 2.0) and high (AR 4.0 and 5.3) AR groups, and Pcr decreases as AR increases in each group. To investigate the results theoretically, the analysis based on Euler's buckling theory and slenderness ratio is conducted, indicating that the theory is only valid for the high-AR group herein. Besides, considering the correction factor, Pcr agrees well with the experimental results.

14.
ACS Appl Mater Interfaces ; 13(1): 806-815, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33393284

ABSTRACT

The development of a novel approach to achieve high-performance and durable fuel cells is imperative for the further commercialization of proton-exchange (or polymer electrolyte) membrane fuel cells (PEMFCs). In this work, multifunctional dendritic Nafion/CeO2 structures were introduced onto the cathode side of the interface between a membrane and a catalyst layer through electrospray deposition. The dendritic structures enlarged the interfacial contact area between the membrane and the catalyst layer and formed microscale voids between the catalyst layer and gas diffusion medium. This improved the PEMFC performance through the effective utilization of the catalyst and enhanced mass transport of the reactant. Especially, under low-humidity conditions, the hygroscopic effect of CeO2 nanoparticles also boosted the power density of PEMFCs. In addition to the beneficial effects on the efficiency of the PEMFC, the incorporation of CeO2, widely known as a radical scavenger, effectively mitigated the free-radical attack on the outer surface of the membrane, where chemical degradation is initiated by radicals formed during PEMFC operation. These multifunctional effects of the dendritic Nafion/CeO2 structures on PEMFC performance and durability were investigated using various in situ and ex situ measurement techniques.

15.
Polymers (Basel) ; 13(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34833318

ABSTRACT

The Nafion® electrolyte membrane, which provides a proton pathway, is an essential element in fuel cell systems. Thermal treatment without additional additives is widely used to modify the mechanical properties of the membrane, to construct reliable and durable electrolyte membranes in the fuel cell. We measured the microscopic mechanical properties of thermally annealed membranes using atomic force microscopy with the two-point method. Furthermore, the macroscopic property was investigated through tensile tests. The microscopic modulus exceeded the macroscopic modulus over all annealing temperature ranges. Additionally, the measured microscopic modulus increased rapidly near 150 °C and was saturated over that temperature, whereas the macroscopic modulus continuously increased until 250 °C. This mismatched micro/macroscopic reinforcement trend indicates that the internal reinforcement of the clusters is induced first until 150 °C. In contrast, the reinforcement among the clusters, which requires more thermal energy, probably progresses even at a temperature of 250 °C. The results showed that the annealing process is effective for the surface smoothing and leveling of the Nafion® membrane until 200 °C.

16.
Nanomicro Lett ; 11(1): 53, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-34137987

ABSTRACT

Large-area polydimethylsiloxane (PDMS) films with variably sized moth-eye structures were fabricated to improve the efficiency of perovskite solar cells. An approach that incorporated photolithography, bilayer PDMS deposition and replication was used in the fabrication process. By simply attaching the moth-eye PDMS films to the transparent substrates of perovskite solar cells, the optical properties of the devices could be tuned by changing the size of the moth-eye structures. The device with 300-nm moth-eye PDMS films greatly enhanced power conversion efficiency of ~ 21% due to the antireflective effect of the moth-eye structure. Furthermore, beautiful coloration was observed on the 1000-nm moth-eye PDMS films through optical interference caused by the diffraction grating effect. Our results imply that moth-eye PDMS films can greatly enhance the efficiency of perovskite solar cells and building-integrated photovoltaics.

17.
ACS Appl Mater Interfaces ; 11(38): 34805-34811, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31469540

ABSTRACT

The recent development of ultrathin anion exchange membranes and optimization of their operating conditions have significantly enhanced the performance of alkaline-membrane fuel cells (AMFCs); however, the effects of the membrane/electrode interface structure on the AMFC performance have not been seriously investigated thus far. Herein, we report on a high-performance AMFC system with a membrane/electrode interface of novel design. Commercially available membranes are modified in the form of well-aligned line arrays of both the anode and cathode sides by means of a solvent-assisted molding technique and sandwich-like assembly of the membrane and polydimethylsiloxane molds. Upon incorporating the patterned membranes into a single-cell system, we observe a significantly enhanced performance of up to ∼35% compared with that of the reference membrane. The enlarged interface area and reduced membrane thickness from the line-patterned membrane/electrode interface result in improved water management, reduced ohmic resistance, and effective utilization of the catalyst. We believe that our findings can significantly contribute further advancements in AMFCs.

18.
Sci Rep ; 8(1): 1257, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352249

ABSTRACT

Guided cracks were successfully generated in an electrode using the concentrated surface stress of a prism-patterned Nafion membrane. An electrode with guided cracks was formed by stretching the catalyst-coated Nafion membrane. The morphological features of the stretched membrane electrode assembly (MEA) were investigated with respect to variation in the prism pattern dimension (prism pitches of 20 µm and 50 µm) and applied strain (S ≈ 0.5 and 1.0). The behaviour of water on the surface of the cracked electrode was examined using environmental scanning electron microscopy. Guided cracks in the electrode layer were shown to be efficient water reservoirs and liquid water passages. The MEAs with and without guided cracks were incorporated into fuel cells, and electrochemical measurements were conducted. As expected, all MEAs with guided cracks exhibited better performance than conventional MEAs, mainly because of the improved water transport.

19.
ACS Appl Mater Interfaces ; 9(50): 44038-44044, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29188987

ABSTRACT

This work reports a facile fabrication method for constructing multifunctional moth-eye TiO2/polydimethylsiloxane (PDMS) pads using soft nano-imprinting lithography and a gas-phase-deposited thin sacrificial layer. Mesoporous TiO2 nanoparticles act as an effective UV filter, completely blocking high-energy UVB light and partially blocking UVA light and forming a robust TiO2/PDMS composite pad by allowing the PDMS solution to easily fill the porous TiO2 network. The paraboloid-shaped moth-eye nanostructures provided high transparency in the visible spectrum and also have self-cleaning effects because of nanoroughness on the surface. Furthermore, we successfully achieved a desired multiscale-patterned surface by partially curing select regions using TiO2/PDMS pads with partial UVA ray blockers. The ability to fabricate multifunctional polymeric pads is advantageous for satisfying increasing demands for flexible and wearable electronics, displays, and solar cells.

20.
ACS Nano ; 11(1): 730-741, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28051852

ABSTRACT

We present a method to induce cell directional behavior using slanted nanocilia arrays. NIH-3T3 fibroblasts demonstrated bidirectional polarization in a rectangular arrangement on vertical nanocilia arrays and exhibited a transition from a bidirectional to a unidirectional polarization pattern when the angle of the nanocilia was decreased from 90° to 30°. The slanted nanocilia guided and facilitated spreading by allowing the cells to contact the sidewalls of the nanocilia, and the directional migration of the cells opposed the direction of the slant due to the anisotropic bending stiffness of the slanted nanocilia. Although the cells recognized the underlying anisotropic geometry when the nanocilia were coated with fibronectin, collagen type I, and Matrigel, the cells lost their directionality when the nanocilia were coated with poly-d-lysine and poly-l-lysine. Furthermore, although the cells recognized geometrical anisotropy on fibronectin coatings, pharmacological perturbation of PI3K-Rac signaling hindered the directional elongation of the cells on both the slanted and vertical nanocilia. Furthermore, myosin light chain II was required for the cells to obtain polarized morphologies. These results indicated that the slanted nanocilia array provided anisotropic contact guidance cues to the interacting cells. The polarization of cells was controlled through two steps: the recognition of underlying geometrical anisotropy and the subsequent directional spreading according to the guidance cues.

SELECTION OF CITATIONS
SEARCH DETAIL