Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Am Chem Soc ; 146(1): 920-929, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38157303

ABSTRACT

We report on porphyrin-flavonol hybrids consisting of a porphyrin antenna and four covalently bound 3-hydroxyflavone (flavonol) groups, which act as highly efficient photoactivatable carbon monoxide (CO)-releasing molecules (photoCORMs). These bichromophoric systems enable activation of the UV-absorbing flavonol chromophore by visible light up to 650 nm and offer precise spatial and temporal control of CO administration. The physicochemical properties of the porphyrin antenna system can also be tuned by inserting a metal cation. Our computational study revealed that the process occurs via endergonic triplet-triplet energy transfer from porphyrin to flavonol and may become feasible thanks to flavonol energy stabilization upon intramolecular proton transfer. This mechanism was also indirectly supported by steady-state and transient absorption spectroscopy techniques. Additionally, the porphyrin-flavonol hybrids were found to be biologically benign. With four flavonol CO donors attached to a single porphyrin chromophore, high CO release yields, excellent uncaging cross sections, low toxicity, and CO therapeutic properties, these photoCORMs offer exceptional potential for their further development and future biological and medical applications.

2.
Phys Chem Chem Phys ; 26(21): 15130-15142, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38525924

ABSTRACT

High-resolution carbon K-edge X-ray photoelectron, X-ray absorption, non-resonant and resonant Auger spectra are presented of gas phase trans-1,3-butadiene alongside a detailed theoretical analysis utilising nuclear ensemble approaches and vibronic models to simulate the spectroscopic observables. The resonant Auger spectra recorded across the first pre-edge band reveal a complex evolution of different electronic states which remain relatively well-localised on the edge or central carbon sites. The results demonstrate the sensitivity of the resonant Auger observables to the weighted contributions from multiple electronic states. The gradually evolving spectral features can be accurately and feasibly simulated within nuclear ensemble methods and interpreted with the population analysis.

3.
J Chem Phys ; 160(14)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38591685

ABSTRACT

This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born-Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born-Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function-ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals.

4.
J Org Chem ; 85(20): 13015-13028, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33003699

ABSTRACT

Phototherapy is a standard treatment for severe neonatal jaundice to remove toxic bilirubin from the blood. Here, the wavelength-dependent photochemistry of vinylneoxanthobilirubic acid methyl ester, a simplified model of a bilirubin dipyrrinone subunit responsible for a lumirubin-like structural rearrangement, was thoroughly investigated by liquid chromatography and mass and absorption spectroscopies, with the application of a multivariate curve resolution analysis method supplemented with quantum chemical calculations. Irradiation of the model chromophore leads to reversible Z → E photoisomerization followed by reversible photocyclization to a seven-membered ring system (formed as a mixture of diastereomers). Both the isomerization processes are efficient (ΦZE ∼ ΦEZ ∼ 0.16) when irradiated in the wavelength range of 360-410 nm, whereas the E-isomer cyclization (Φc = 0.006-0.008) and cycloreversion (Φ-c = 0.002-0.004) reactions are significantly less efficient. The quantum yields of all processes were found to depend strongly on the wavelength of irradiation, especially when lower energy photons were used. Upon irradiation in the tail of the absorption bands (490 nm), both the isomers exhibit more efficient photoisomerization (ΦZE ∼ ΦEZ ∼ 0.30) and cyclization (Φc = ∼0.07). In addition, the isomeric bilirubin dipyrrinone subunits were found to possess important antioxidant activities while being substantially less toxic than bilirubin.


Subject(s)
Jaundice, Neonatal , Bilirubin , Humans , Infant, Newborn , Isomerism , Photochemistry , Phototherapy
5.
J Phys Chem A ; 124(50): 10457-10471, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33283519

ABSTRACT

The photochemistry of bilirubin has been extensively studied due to its importance in the phototherapy of hyperbilirubinemia. In the present work, we investigated the ultrafast photodynamics of a bilirubin dipyrrinone subunit, vinylneoxanthobilirubic acid methyl ester. The photoisomerization and photocyclization reactions of its (E) and (Z) isomers were studied using femtosecond transient absorption spectroscopy and by multireference electronic structure theory, where the nonadiabatic dynamics was modeled with a Landau-Zener surface hopping technique. The following picture has emerged from the combined theoretical and experimental approach. Upon excitation, dipyrrinone undergoes a very fast vibrational relaxation, followed by an internal conversion on a picosecond time scale. The internal conversion leads either to photoisomerization or regeneration of the starting material. Further relaxation dynamics on the order of tens of picoseconds was observed in the ground state. The nonadiabatic simulations revealed a strong conformational control of the photodynamics. The ultrafast formation of a cyclic photochemical product from a less-populated conformer of the studied subunit was predicted by our calculations. We discuss the relevance of the present finding for the photochemistry of native bilirubin. The work has also pointed to the limits of semiclassical nonadiabatic simulations for simulating longer photochemical processes, probably due to the zero-point leakage issue.


Subject(s)
Bilirubin/chemistry , Photochemical Processes , Spectrum Analysis/methods , Thermodynamics , Models, Molecular , Molecular Conformation , Quantum Theory
6.
J Chem Theory Comput ; 19(22): 8273-8284, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37939301

ABSTRACT

The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau-Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.

7.
ACS Earth Space Chem ; 7(11): 2275-2286, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38026808

ABSTRACT

The wavelength control of photochemistry usually results from ultrafast dynamics following the excitation of different electronic states. Here, we investigate the CF3COCl molecule, exhibiting wavelength-dependent photochemistry both via (i) depositing increasing internal energy into a single state and (ii) populating different electronic states. We reveal the mechanism behind the photon-energy dependence by combining nonadiabatic ab initio molecular dynamics techniques with the velocity map imaging experiment. We describe a consecutive mechanism of photodissociation where an immediate release of Cl taking place in an excited electronic state is followed by a slower ground-state dissociation of the CO fragment. The CO release is subject to an activation barrier and is controlled by excess internal energy via the excitation wavelength. Therefore, a selective release of CO along with Cl can be achieved. The mechanism is fully supported by both the measured kinetic energy distributions and anisotropies of the angular distributions. Interestingly, the kinetic energy of the released Cl atom is sensitively modified by accounting for spin-orbit coupling. Given the atmospheric importance of CF3COCl, we discuss the consequences of our findings for atmospheric photochemistry.

8.
Nat Commun ; 13(1): 3614, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750661

ABSTRACT

Photoremovable protecting groups (PPGs) represent one of the main contemporary implementations of photochemistry in diverse fields of research and practical applications. For the past half century, organic and metal-complex PPGs were considered mutually exclusive classes, each of which provided unique sets of physical and chemical properties thanks to their distinctive structures. Here, we introduce the meso-methylporphyrin group as a prototype hybrid-class PPG that unites traditionally exclusive elements of organic and metal-complex PPGs within a single structure. We show that the porphyrin scaffold allows extensive modularity by functional separation of the metal-binding chromophore and up to four sites of leaving group release. The insertion of metal ions can be used to tune their spectroscopic, photochemical, and biological properties. We provide a detailed description of the photoreaction mechanism studied by steady-state and transient absorption spectroscopies and quantum-chemical calculations. Our approach applied herein could facilitate access to a hitherto untapped chemical space of potential PPG scaffolds.


Subject(s)
Porphyrins , Ions , Light , Metals , Photochemistry
9.
J Chem Theory Comput ; 16(9): 5809-5820, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32687703

ABSTRACT

Ab initio excited state photodynamical simulations have entered the mainstream in the past two decades, bringing techniques of various sophistication and computational requirements for the description of nonadiabatic transitions. We explore in this work the performance of the recently reformulated Landau-Zener surface hopping (LZSH) approach and extend it for the simultaneous treatment of internal conversion and intersystem crossing events. We studied photochemical reactions of four model molecules (cyclopropanone, methaniminium cation, cytosine, and thiophene). The calculated quantities are generally in excellent agreement with the corresponding fewest switches surface hopping simulations. Furthermore, the algorithm proved to be significantly more stable and more computationally efficient. LZSH also puts fewer constraints on the electronic structure theory as the nonadiabatic couplings are not needed. We argue that the accuracy of photodynamical simulations is in practice dominated by the electronic structure theory, and it is, therefore, legitimate to use the simplest and the most efficient technique for the treatment of nonadiabatic transitions.

SELECTION OF CITATIONS
SEARCH DETAIL