Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326622

ABSTRACT

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Subject(s)
Depressive Disorder, Major , Matrix Metalloproteinase 8 , Monocytes , Stress, Psychological , Animals , Humans , Mice , Depressive Disorder, Major/blood , Depressive Disorder, Major/enzymology , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Extracellular Space/metabolism , Matrix Metalloproteinase 8/blood , Matrix Metalloproteinase 8/deficiency , Matrix Metalloproteinase 8/genetics , Matrix Metalloproteinase 8/metabolism , Mice, Inbred C57BL , Monocytes/chemistry , Monocytes/immunology , Monocytes/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/pathology , Parenchymal Tissue/metabolism , Single-Cell Gene Expression Analysis , Social Behavior , Social Isolation , Stress, Psychological/blood , Stress, Psychological/genetics , Stress, Psychological/immunology , Stress, Psychological/metabolism
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256223

ABSTRACT

Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.


Subject(s)
Blast Injuries , Brain Concussion , Vascular System Injuries , Animals , Humans , Endothelial Cells , Astrocytes , Inflammation
3.
Proc Natl Acad Sci U S A ; 116(52): 26239-26246, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31871145

ABSTRACT

As the average age of the population continues to rise, the number of individuals affected with age-related cognitive decline and Alzheimer's disease (AD) has increased and is projected to cost more than $290 billion in the United States in 2019. Despite significant investment in research over the last decades, there is no effective treatment to prevent or delay AD progression. There is a translational gap in AD research, with promising drugs based on work in rodent models failing in clinical trials. Aging is the leading risk factor for developing AD and understanding neurobiological changes that affect synaptic integrity with aging will help clarify why the aged brain is vulnerable to AD. We describe here the development of a rhesus monkey model of AD using soluble oligomers of the amyloid beta (Aß) peptide (AßOs). AßOs infused into the monkey brain target a specific population of spines in the prefrontal cortex, induce neuroinflammation, and increase AD biomarkers in the cerebrospinal fluid to similar levels observed in patients with AD. Importantly, AßOs lead to similar dendritic spine loss to that observed in normal aging in monkeys, but so far without detection of amyloid plaques or tau pathology. Understanding the basis of synaptic impairment is the most effective route to early intervention and prevention or postponement of age-related cognitive decline and transition to AD. These initial findings support the use of monkeys as a platform to understand age-related vulnerabilities of the primate brain and may help develop effective disease-modifying therapies for treatment of AD and related dementias.

4.
Am J Primatol ; 83(11): e23271, 2021 11.
Article in English | MEDLINE | ID: mdl-34018622

ABSTRACT

Age-related cognitive decline has been extensively studied in humans, but the majority of research designs are cross-sectional and compare across younger and older adults. Longitudinal studies are necessary to capture variability in cognitive aging trajectories but are difficult to carry out in humans and long-lived nonhuman primates. Marmosets are an ideal primate model for neurocognitive aging as their naturally short lifespan facilitates longitudinal designs. In a longitudinal study of marmosets tested on reversal learning starting in middle-age, we found that, on average, the group of marmosets declined in cognitive performance around 8 years of age. However, we found highly variable patterns of cognitive aging trajectories across individuals. Preliminary analyses of brain tissues from this cohort also show highly variable degrees of neuropathology. Future work will tie together behavioral trajectories with brain pathology and provide a window into the factors that predict age-related cognitive decline.


Subject(s)
Aging , Callithrix , Animals , Cross-Sectional Studies , Longevity , Longitudinal Studies
5.
Alzheimers Dement ; 17(6): 933-945, 2021 06.
Article in English | MEDLINE | ID: mdl-33734581

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a devastating condition with no effective treatments, with promising findings in rodents failing to translate into successful therapies for patients. METHODS: Targeting the vulnerable entorhinal cortex (ERC), rhesus monkeys received two injections of an adeno-associated virus expressing a double tau mutation (AAV-P301L/S320F) in the left hemisphere, and control AAV-green fluorescent protein in the right ERC. Noninjected aged-matched monkeys served as additional controls. RESULTS: Within 3 months we observed evidence of misfolded tau propagation, similar to what is hypothesized to occur in humans. Viral delivery of human 4R-tau also coaptates monkey 3R-tau via permissive templating. Tau spreading is accompanied by robust neuroinflammatory response driven by TREM2+ microglia, with biomarkers of inflammation and neuronal loss in the cerebrospinal fluid and plasma. DISCUSSION: These results highlight the initial stages of tau seeding and propagation in a primate model, a more powerful translational approach for the development of new therapies for AD.


Subject(s)
Alzheimer Disease/pathology , Disease Models, Animal , Macaca mulatta/metabolism , tau Proteins/cerebrospinal fluid , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Entorhinal Cortex/pathology , Female , Humans , Microglia/metabolism , Mutation/genetics
6.
J Neurosci ; 38(49): 10467-10478, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30355632

ABSTRACT

Brodmann area 7a of the parietal cortex is active during working memory tasks in humans and nonhuman primates, but the composition and density of dendritic spines in area 7a and their relevance both to working memory and cognitive aging remain unexplored. Aged monkeys have impaired working memory, and we have previously shown that this age-induced cognitive impairment is partially mediated by a loss of thin spines in prefrontal cortex area 46, a critical area for working memory. Because area 46 is reciprocally connected with area 7a of the parietal cortex and 7a mediates visual attention integration, we hypothesized that thin spine density in area 7a would correlate with working memory performance as well. To investigate the synaptic profile of area 7a and its relevance to working memory and cognitive aging, we investigated differences in spine type and density in layer III pyramidal cells of area 7a in young and aged, male and female rhesus macaques (Macaca mulatta) that were cognitively assessed using the delayed response test of working memory. Area 7a shows age-related loss of thin spines, and thin spine density positively correlates with delayed response performance in aged monkeys. In contrast, these cells show no age-related changes in dendritic length or branching. These changes mirror age-related changes in area 46 but are distinct from other neocortical regions, such as V1. These findings support our hypothesis that cognitive aging is driven primarily by synaptic changes, and more specifically by changes in thin spines, in key association areas.SIGNIFICANCE STATEMENT This study advances our understanding of cognitive aging by demonstrating the relevance of area 7a thin spines to working memory performance. This study is the first to look at cognitive aging in the intraparietal sulcus, and also the first to report spine or dendritic measures for area 7a in either young adult or aged nonhuman primates. These results contribute to the hypothesis that thin spines support working memory performance and confirm our prior observation that cognitive aging is driven by synaptic changes rather than changes in dendritic morphology or neuron death. Importantly, these data show that age-related working memory changes are not limited to disruptions of the prefrontal cortex but also include an association region heavily interconnected with prefrontal cortex.


Subject(s)
Aging/pathology , Dendritic Spines/pathology , Memory Disorders/pathology , Memory, Short-Term , Parietal Lobe/pathology , Aging/physiology , Animals , Cell Death/physiology , Dendritic Spines/physiology , Female , Forecasting , Macaca mulatta , Male , Memory, Short-Term/physiology , Parietal Lobe/physiology , Random Allocation
7.
Cereb Cortex ; 27(3): 2022-2033, 2017 03 01.
Article in English | MEDLINE | ID: mdl-26941383

ABSTRACT

Age- and menopause-related impairment in working memory mediated by the dorsolateral prefrontal cortex (dlPFC) occurs in humans and nonhuman primates. Long-term cyclic 17ß-estradiol treatment rescues cognitive deficits in aged ovariectomized rhesus monkeys while restoring highly plastic synapses. Here we tested whether distributions of G protein-coupled estrogen receptor 1 (GPER1) within monkey layer III dlPFC synapses are sensitive to age and estradiol, and coupled to cognitive function. Ovariectomized young and aged monkeys administered vehicle or estradiol were first tested on a delayed response test of working memory. Then, quantitative serial section immunoelectron microscopy was used to determine the distributions of synaptic GPER1. GPER1-containing nonperforated axospinous synapse density was reduced with age, and partially restored with estrogen treatment. The majority of synapses expressed GPER1, which was predominately localized to presynaptic cytoplasm and mitochondria. GPER1 was also abundant at plasmalemmas, and within cytoplasmic and postsynaptic density (PSD) domains of dendritic spines. GPER1 levels did not differ with age or treatment, and none of the variables examined were tightly associated with cognitive function. However, greater representation of GPER1 subjacent to the PSD accompanied higher synapse density. These data suggest that GPER1 is positioned to support diverse functions key to synaptic plasticity in monkey dlPFC.


Subject(s)
Aging/metabolism , Estrogen Receptor alpha/metabolism , Menopause/metabolism , Prefrontal Cortex/metabolism , Synapses/metabolism , Aging/pathology , Animals , Estradiol/administration & dosage , Estrogens/administration & dosage , Female , Hormone Replacement Therapy , Immunohistochemistry , Macaca mulatta , Microscopy, Immunoelectron , Neuronal Plasticity/physiology , Ovariectomy , Prefrontal Cortex/pathology , Synapses/pathology
8.
J Neurosci ; 36(3): 901-10, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26791219

ABSTRACT

Humans and nonhuman primates are vulnerable to age- and menopause- related decline in working memory, a cognitive function reliant on area 46 of the dorsolateral prefrontal cortex (dlPFC). We showed previously that presynaptic mitochondrial number and morphology in monkey dlPFC neurons correlate with working memory performance. The current study tested the hypothesis that the types of synaptic connections these boutons form are altered with aging and menopause in rhesus monkeys and that these metrics may be coupled with mitochondrial measures and working memory. Using serial section electron microscopy, we examined the frequencies and characteristics of nonsynaptic, single-synaptic, and multisynaptic boutons (MSBs) in the dlPFC. In contrast to our previous observations in the monkey hippocampal dentate gyrus, where MSBs comprised ∼40% of boutons, the vast majority of dlPFC boutons were single-synaptic, whereas MSBs constituted a mere 10%. The frequency of MSBs was not altered by normal aging, but decreased by over 50% with surgical menopause induced by ovariectomy in aged monkeys. Cyclic estradiol treatment in aged ovariectomized animals restored MSB frequencies to levels comparable to young and aged premenopausal monkeys. Notably, the frequency of MSBs positively correlated with working memory scores, as measured by the average accuracy on the delayed response (DR) test. Furthermore, MSB incidence positively correlated with the number of healthy straight mitochondria in dlPFC boutons and inversely correlated with the number of pathological donut-shaped mitochondria. Together, our data suggest that MSBs are coupled to cognitive function and mitochondrial health and are sensitive to estrogen. Significance statement: Many aged menopausal individuals experience deficits in working memory, an executive function reliant on recurrent firing of prefrontal cortex (PFC) neurons. However, little is known about the organization of presynaptic inputs to these neurons and how they may be altered with aging and menopause. Multisynaptic boutons (MSBs) were of particular interest, because they form multiple synapses and can enhance coupling between presynaptic and postsynaptic neurons. We found that higher MSB frequency correlated with better working memory performance in rhesus monkeys. Additionally, aged surgically menopausal monkeys experienced a 50% loss of MSBs that was restored with cyclic estradiol treatment. Together, our findings suggest that hormone replacement therapy benefits cognitive aging, in part by retaining complex synaptic organizations in the PFC.


Subject(s)
Aging/metabolism , Estrogens/pharmacology , Memory, Short-Term/physiology , Prefrontal Cortex/metabolism , Presynaptic Terminals/metabolism , Aging/drug effects , Animals , Estrogen Replacement Therapy/methods , Female , Macaca mulatta , Memory, Short-Term/drug effects , Ovariectomy , Prefrontal Cortex/drug effects , Presynaptic Terminals/drug effects , Synapses/drug effects , Synapses/metabolism
9.
Proc Natl Acad Sci U S A ; 111(1): 486-91, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24297907

ABSTRACT

Humans and nonhuman primates are vulnerable to age- and menopause-related decline in working memory, a cognitive function reliant on the energy-demanding recurrent excitation of neurons within Brodmann's Area 46 of the dorsolateral prefrontal cortex (dlPFC). Here, we tested the hypothesis that the number and morphology (straight, curved, or donut-shaped) of mitochondria in dlPFC presynaptic boutons are altered with aging and menopause in rhesus monkeys (Macaca mulatta) and that these metrics correlate with delayed response (DR) accuracy, a well-characterized measure of dlPFC-dependent working memory. Although presynaptic bouton density or size was not significantly different across groups distinguished by age or menses status, DR accuracy correlated positively with the number of total and straight mitochondria per dlPFC bouton. In contrast, DR accuracy correlated inversely with the frequency of boutons containing donut-shaped mitochondria, which exhibited smaller active zone areas and fewer docked synaptic vesicles than those with straight or curved mitochondria. We then examined the effects of estrogen administration to test whether a treatment known to improve working memory influences mitochondrial morphology. Aged ovariectomized monkeys treated with vehicle displayed significant working memory impairment and a concomitant 44% increase in presynaptic donut-shaped mitochondria, both of which were reversed with cyclic estradiol treatment. Together, our data suggest that hormone replacement therapy may benefit cognitive aging, in part by promoting mitochondrial and synaptic health in the dlPFC.


Subject(s)
Estradiol/pharmacology , Estrogens/pharmacology , Memory, Short-Term/physiology , Mitochondria/metabolism , Prefrontal Cortex/physiology , Presynaptic Terminals/physiology , Aging , Animals , Behavior, Animal , Brain Mapping/methods , Cognition , Female , Haplorhini , Imaging, Three-Dimensional , Macaca mulatta , Memory, Short-Term/drug effects , Menstrual Cycle , Prefrontal Cortex/drug effects , Presynaptic Terminals/drug effects , Reproducibility of Results , Synaptic Transmission , Time Factors
10.
Proc Natl Acad Sci U S A ; 111(52): 18733-8, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25512503

ABSTRACT

The dementia of Alzheimer's disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline.


Subject(s)
Aging/metabolism , CA1 Region, Hippocampal/metabolism , Cognition , Glutamic Acid/metabolism , Memory , Receptors, N-Methyl-D-Aspartate/metabolism , Aging/pathology , Animals , CA1 Region, Hippocampal/pathology , Dendrites/metabolism , Male , Neuroprotective Agents/pharmacology , Prefrontal Cortex , Rats , Rats, Sprague-Dawley , Riluzole/pharmacology , Synapses/metabolism , Synapses/pathology , Synaptic Transmission/drug effects
11.
Neuroendocrinology ; 103(6): 650-64, 2016.
Article in English | MEDLINE | ID: mdl-26536204

ABSTRACT

The median eminence (ME) of the hypothalamus comprises the hypothalamic nerve terminals, glia (especially tanycytes) and the portal capillary vasculature that transports hypothalamic neurohormones to the anterior pituitary gland. The ultrastructure of the ME is dynamically regulated by hormones and undergoes organizational changes during development and reproductive cycles in adult females, but relatively little is known about the ME during aging, especially in nonhuman primates. Therefore, we used a novel transmission scanning electron microscopy technique to examine the cytoarchitecture of the ME of young and aged female rhesus macaques in a preclinical monkey model of menopausal hormone treatments. Rhesus macaques were ovariectomized and treated for 2 years with vehicle, estradiol (E2), or estradiol + progesterone (E2 + P4). While the overall cytoarchitecture of the ME underwent relatively few changes with age and hormones, changes to some features of neural and glial components near the portal capillaries were observed. Specifically, large neuroterminal size was greater in aged compared to young adult animals, an effect that was mitigated or reversed by E2 alone but not by E2 + P4 treatment. Overall glial size and the density and tissue fraction of the largest subset of glia were greater in aged monkeys, and in some cases reversed by E2 treatment. Mitochondrial size was decreased by E2, but not E2 + P4, only in aged macaques. These results contrast substantially with work in rodents, suggesting that the ME of aging macaques is less vulnerable to age-related disorganization, and that the effects of E2 on monkeys' ME are age specific.


Subject(s)
Aging/physiology , Estradiol/pharmacology , Median Eminence/drug effects , Median Eminence/ultrastructure , Progesterone/pharmacology , Analysis of Variance , Animals , Female , Gonadotropin-Releasing Hormone/metabolism , Macaca mulatta , Microscopy, Confocal , Microscopy, Electron, Transmission , Ovariectomy , Time Factors
12.
Proc Natl Acad Sci U S A ; 110 Suppl 2: 10395-401, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23754422

ABSTRACT

Neocortical development in humans is characterized by an extended period of synaptic proliferation that peaks in mid-childhood, with subsequent pruning through early adulthood, as well as relatively delayed maturation of neuronal arborization in the prefrontal cortex compared with sensorimotor areas. In macaque monkeys, cortical synaptogenesis peaks during early infancy and developmental changes in synapse density and dendritic spines occur synchronously across cortical regions. Thus, relatively prolonged synapse and neuronal maturation in humans might contribute to enhancement of social learning during development and transmission of cultural practices, including language. However, because macaques, which share a last common ancestor with humans ≈ 25 million years ago, have served as the predominant comparative primate model in neurodevelopmental research, the paucity of data from more closely related great apes leaves unresolved when these evolutionary changes in the timing of cortical development became established in the human lineage. To address this question, we used immunohistochemistry, electron microscopy, and Golgi staining to characterize synaptic density and dendritic morphology of pyramidal neurons in primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortices of developing chimpanzees (Pan troglodytes). We found that synaptogenesis occurs synchronously across cortical areas, with a peak of synapse density during the juvenile period (3-5 y). Moreover, similar to findings in humans, dendrites of prefrontal pyramidal neurons developed later than sensorimotor areas. These results suggest that evolutionary changes to neocortical development promoting greater neuronal plasticity early in postnatal life preceded the divergence of the human and chimpanzee lineages.


Subject(s)
Dendrites , Neocortex , Pan troglodytes , Phylogeny , Pyramidal Cells , Synapses/physiology , Animals , Dendrites/physiology , Feedback, Sensory/physiology , Female , Humans , Male , Neocortex/cytology , Neocortex/physiology , Pan troglodytes/anatomy & histology , Pan troglodytes/physiology , Pyramidal Cells/cytology , Pyramidal Cells/physiology
13.
FASEB J ; 28(5): 2120-33, 2014 May.
Article in English | MEDLINE | ID: mdl-24497580

ABSTRACT

Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1-615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1-524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1-615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.


Subject(s)
Blood Pressure , Neuropeptides/genetics , Neuropeptides/metabolism , Secretory Vesicles/metabolism , Adrenal Medulla/metabolism , Angiotensin Amide/blood , Animals , Chromaffin Cells/metabolism , Chromogranin A/metabolism , Cytoplasm/metabolism , Epinephrine/blood , Gene Knock-In Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Nerve Growth Factors , Neurotransmitter Agents/metabolism , Peptide Fragments/metabolism , Phenotype
14.
J Neurosci ; 32(21): 7336-44, 2012 May 23.
Article in English | MEDLINE | ID: mdl-22623679

ABSTRACT

Rhesus monkeys provide a valuable model for studying the neurobiological basis of cognitive aging, because they are vulnerable to age-related memory decline in a manner similar to humans. In this study, young and aged monkeys were first tested on a well characterized recognition memory test (delayed nonmatching-to-sample; DNMS). Then, electron microscopic immunocytochemistry was performed to determine the subcellular localization of two proteins in the hippocampal dentate gyrus (DG): the GluA2 subunit of the glutamate AMPA receptor and the atypical protein kinase C ζ isoform (PKMζ). PKMζ promotes memory storage by regulating GluA2-containing AMPA receptor trafficking. Thus, we examined whether the distribution of GluA2 and PKMζ is altered with aging in DG axospinous synapses and whether it is coupled with memory deficits. Monkeys with faster DNMS task acquisition and more accurate recognition memory exhibited higher proportions of dendritic spines coexpressing GluA2 and PKMζ. These double-labeled spines had larger synapses, as measured by postsynaptic density area, than single-labeled and unlabeled spines. Within this population of double-labeled spines, aged monkeys compared with young expressed a lower density of synaptic GluA2 immunogold labeling, which correlated with lower recognition accuracy. Additionally, higher density of synaptic PKMζ labeling in double-labeled spines correlated with both faster task acquisition and better retention. Together, these findings suggest that age-related impairment in maintenance of GluA2 at the synapse in the primate hippocampus is coupled with memory deficits.


Subject(s)
Aging/metabolism , Dentate Gyrus/metabolism , Memory/physiology , Protein Kinase C/metabolism , Receptors, AMPA/metabolism , Synapses/metabolism , Aging/physiology , Animals , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Dentate Gyrus/physiology , Dentate Gyrus/ultrastructure , Female , Macaca mulatta , Memory Disorders/metabolism , Memory Disorders/physiopathology , Neurons/metabolism , Neurons/physiology , Neurons/ultrastructure , Protein Kinase C/physiology , Protein Transport/physiology , Psychomotor Performance/physiology , Receptors, AMPA/physiology , Recognition, Psychology/physiology , Synapses/ultrastructure
15.
J Neurosci ; 32(20): 6957-66, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22593064

ABSTRACT

Numerous studies have found that chronic cocaine increases dendritic spine density of medium spiny neurons in the nucleus accumbens (NAc). Here, we used single-cell microinjections and advanced 3D imaging and analysis techniques to extend these findings in several important ways: by assessing cocaine regulation of dendritic spines in the core versus shell subregions of NAc in the mouse, over a broad time course (4 h, 24 h, or 28 d) of withdrawal from chronic cocaine, and with a particular focus on proximal versus distal dendrites. Our data demonstrate subregion-specific, and in some cases opposite, regulation of spines by cocaine on proximal but not distal dendrites. Notably, all observed density changes were attributable to selective regulation of thin spines. At 4 h after injection, the proximal spine density is unchanged in the core but significantly increased in the shell. At 24 h, the density of proximal dendritic spines is reduced in the core but increased in the shell. Such downregulation of thin spines in the core persists through 28 d of withdrawal, whereas the spine density in the shell returns to baseline levels. Consistent with previous results, dendritic tips exhibited upregulation of dendritic spines after 24 h of withdrawal, an effect localized to the shell. The divergence in regulation of proximal spine density in NAc core versus shell by cocaine correlates with recently reported electrophysiological data from a similar drug administration regimen and might represent a key mediator of changes in the reward circuit that drive aspects of addiction.


Subject(s)
Cocaine/pharmacology , Dendrites/drug effects , Dendritic Spines/drug effects , Nucleus Accumbens/cytology , Animals , Cocaine/administration & dosage , Image Processing, Computer-Assisted/methods , Male , Mice , Mice, Inbred C57BL , Microinjections , Neuronal Plasticity/drug effects , Nucleus Accumbens/drug effects
16.
J Neurosci ; 32(34): 11700-5, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22915112

ABSTRACT

Preclinical animal models have provided strong evidence that estrogen (E) therapy (ET) enhances cognition and induces spinogenesis in neuronal circuits. However, clinical studies have been inconsistent, with some studies revealing adverse effects of ET, including an increased risk of dementia. In an effort to bridge this disconnect between the preclinical and clinical data, we have developed a nonhuman primate (NHP) model of ET combined with high-resolution dendritic spine analysis of dorsolateral prefrontal cortical (dlPFC) neurons. Previously, we reported cyclic ET in aged, ovariectomized NHPs increased spine density on dlPFC neurons. Here, we report that monkeys treated with cyclic E treatment paired with cyclic progesterone (P), continuous E combined with P (either cyclic or continuous), or unopposed continuous E failed to increase spines on dlPFC neurons. Given that the most prevalent form of ET prescribed to women is a combined and continuous E and P, these data bring into convergence the human neuropsychological findings and preclinical neurobiological evidence that standard hormone therapy in women is unlikely to yield the synaptic benefit presumed to underlie the cognitive enhancement reported in animal models.


Subject(s)
Aging/drug effects , Dendritic Spines/drug effects , Estrogens/pharmacology , Neurons/cytology , Prefrontal Cortex/cytology , Progesterone/pharmacology , Aging/pathology , Analysis of Variance , Animals , Estrogens/blood , Female , Macaca mulatta , Microscopy, Confocal , Neurons/drug effects , Ovariectomy , Prefrontal Cortex/drug effects , Progesterone/blood
17.
Neurobiol Aging ; 123: 49-62, 2023 03.
Article in English | MEDLINE | ID: mdl-36638681

ABSTRACT

The investigation of neurobiological and neuropathological changes that affect synaptic integrity and function with aging is key to understanding why the aging brain is vulnerable to Alzheimer's disease. We investigated the cellular characteristics in the cerebral cortex of behaviorally characterized marmosets, based on their trajectories of cognitive learning as they transitioned to old age. We found increased astrogliosis, increased phagocytic activity of microglial cells and differences in resting and reactive microglial cell phenotypes in cognitively impaired compared to nonimpaired marmosets. Differences in amyloid beta deposition were not related to cognitive trajectory. However, we found age-related changes in density and morphology of dendritic spines in pyramidal neurons of layer 3 in the dorsolateral prefrontal cortex and the CA1 field of the hippocampus between cohorts. Overall, our data suggest that an accelerated aging process, accompanied by neurodegeneration, that takes place in cognitively impaired aged marmosets and affects the plasticity of dendritic spines in cortical areas involved in cognition and points to mechanisms of neuronal vulnerability to aging.


Subject(s)
Amyloid beta-Peptides , Callithrix , Animals , Brain , Neurons , Aging/physiology
18.
bioRxiv ; 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36711708

ABSTRACT

The basolateral amygdala (BLA) projects widely across the macaque frontal cortex1-4, and amygdalo-frontal projections are critical for optimal emotional responding5 and decision-making6. Yet, little is known about the single-neuron architecture of these projections: namely, whether single BLA neurons project to multiple parts of the frontal cortex. Here, we use MAPseq7 to determine the projection patterns of over 3000 macaque BLA neurons. We found that one-third of BLA neurons have two or more distinct targets in parts of frontal cortex and of subcortical structures. Further, we reveal non-random structure within these branching patterns such that neurons with four targets are more frequently observed than those with two or three, indicative of widespread networks. Consequently, these multi-target single neurons form distinct networks within medial and ventral frontal cortex consistent with their known functions in regulating mood and decision-making. Additionally, we show that branching patterns of single neurons shape functional networks in the brain as assessed by fMRI-based functional connectivity. These results provide a neuroanatomical basis for the role of the BLA in coordinating brain-wide responses to valent stimuli8 and highlight the importance of high-resolution neuroanatomical data for understanding functional networks in the brain.

19.
Neuron ; 111(20): 3307-3320.e5, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37857091

ABSTRACT

Basolateral amygdala (BLA) projects widely across the macaque frontal cortex, and amygdalo-frontal projections are critical for appropriate emotional responding and decision making. While it is appreciated that single BLA neurons branch and project to multiple areas in frontal cortex, the organization and frequency of this branching has yet to be fully characterized. Here, we determined the projection patterns of more than 3,000 macaque BLA neurons. We found that one-third of BLA neurons had two or more distinct projection targets in frontal cortex and subcortical structures. The patterns of single BLA neuron projections to multiple areas were organized into repeating motifs that targeted distinct sets of areas in medial and ventral frontal cortex, indicative of separable BLA networks. Our findings begin to reveal the rich structure of single-neuron connections in the non-human primate brain, providing a neuroanatomical basis for the role of BLA in coordinating brain-wide responses to valent stimuli.


Subject(s)
Basolateral Nuclear Complex , Animals , Basolateral Nuclear Complex/physiology , Macaca , Neural Pathways/physiology , Frontal Lobe , Neurons/physiology , Prefrontal Cortex/physiology
20.
Res Sq ; 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36778505

ABSTRACT

Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3,4,5, the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), thereby altering social behaviour. Using a combination of mass cytometry and single-cell RNA-sequencing, we performed high-dimensional phenotyping of immune cells in circulation and brain and demonstrate that peripheral monocytes are strongly affected by stress. Both peripheral and brain-infiltrating monocytes of SUS mice showed increased Mmp8 expression following CSDS. We further demonstrate that peripheral MMP8 directly infiltrates the NAc parenchyma to control the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a novel mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.

SELECTION OF CITATIONS
SEARCH DETAIL