Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(17): e2319726121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38630713

ABSTRACT

The Ornate Moth, Utetheisa ornatrix, has served as a model species in chemical ecology studies for decades. Like in the widely publicized stories of the Monarch and other milkweed butterflies, the Ornate Moth and its relatives are tropical insects colonizing whole continents assisted by their chemical defenses. With the recent advances in genomic techniques and evo-devo research, it is becoming a model for studies in other areas, from wing pattern development to phylogeography, from toxicology to epigenetics. We used a genomic approach to learn about Utetheisa's evolution, detoxification, dispersal abilities, and wing pattern diversity. We present an evolutionary genomic analysis of the worldwide genus Utetheisa, then focusing on U. ornatrix. Our reference genome of U. ornatrix reveals gene duplications in the regions possibly associated with detoxification abilities, which allows them to feed on toxic food plants. Finally, comparative genomic analysis of over 100 U. ornatrix specimens from the museum with apparent differences in wing patterns suggest the potential roles of cortex and lim3 genes in wing pattern formation of Lepidoptera and the utility of museum-preserved collection specimens for wing pattern research.


Subject(s)
Butterflies , Moths , Animals , Moths/genetics , Butterflies/genetics , Genomics , Wings, Animal
2.
J Nat Prod ; 87(4): 1171-1178, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38557026

ABSTRACT

The potential of natural products as pharmaceutical and agricultural agents is based on their large structural diversity, resulting in part from modifications of the backbone structure by tailoring enzymes during biosynthesis. Flavin-dependent monooxygenases (FMOs), as one such group of enzymes, play an important role in the biosynthesis of diverse natural products, including cyclodipeptide (CDP) derivatives. The FMO PboD was shown to catalyze C-3 hydroxylation at the indole ring of cyclo-l-Trp-l-Leu in the biosynthesis of protubonines, accompanied by pyrrolidine ring formation. PboD substrate promiscuity was investigated in this study by testing its catalytic activity toward additional tryptophan-containing CDPs in vitro and biotransformation in Aspergillus nidulans transformants bearing a truncated protubonine gene cluster with pboD and two acetyltransferase genes. High acceptance of five CDPs was detected for PboD, especially of those with a second aromatic moiety. Isolation and structure elucidation of five pyrrolidine diketopiperazine products, with two new structures, proved the expected stereospecific hydroxylation and pyrrolidine ring formation. Determination of kinetic parameters revealed higher catalytic efficiency of PboD toward three CDPs consisting of aromatic amino acids than of its natural substrate cyclo-l-Trp-l-Leu. In the biotransformation experiments with the A. nidulans transformant, modest formation of hydroxylated and acetylated products was also detected.


Subject(s)
Aspergillus , Diketopiperazines , Aspergillus/enzymology , Aspergillus/chemistry , Aspergillus nidulans/enzymology , Aspergillus nidulans/metabolism , Diketopiperazines/chemistry , Diketopiperazines/metabolism , Flavins/metabolism , Hydroxylation , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Substrate Specificity
3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33431562

ABSTRACT

We have been field observers of tropical insects on four continents and, since 1978, intense observers of caterpillars, their parasites, and their associates in the 1,260 km2 of dry, cloud, and rain forests of Área de Conservación Guanacaste (ACG) in northwestern Costa Rica. ACG's natural ecosystem restoration began with its national park designation in 1971. As human biomonitors, or "insectometers," we see that ACG's insect species richness and density have gradually declined since the late 1970s, and more intensely since about 2005. The overarching perturbation is climate change. It has caused increasing ambient temperatures for all ecosystems; more erratic seasonal cues; reduced, erratic, and asynchronous rainfall; heated air masses sliding up the volcanoes and burning off the cloud forest; and dwindling biodiversity in all ACG terrestrial ecosystems. What then is the next step as climate change descends on ACG's many small-scale successes in sustainable biodevelopment? Be kind to the survivors by stimulating and facilitating their owner societies to value them as legitimate members of a green sustainable nation. Encourage national bioliteracy, BioAlfa.


Subject(s)
Climate Change , Conservation of Natural Resources , DNA Barcoding, Taxonomic , Ecosystem , Insecta , Animals , Costa Rica , Extinction, Biological , Tropical Climate
4.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33568532

ABSTRACT

We assembled a complete reference genome of Eumaeus atala, an aposematic cycad-eating hairstreak butterfly that suffered near extinction in the United States in the last century. Based on an analysis of genomic sequences of Eumaeus and 19 representative genera, the closest relatives of Eumaeus are Theorema and Mithras We report natural history information for Eumaeus, Theorema, and Mithras Using genomic sequences for each species of Eumaeus, Theorema, and Mithras (and three outgroups), we trace the evolution of cycad feeding, coloration, gregarious behavior, and other traits. The switch to feeding on cycads and to conspicuous coloration was accompanied by little genomic change. Soon after its origin, Eumaeus split into two fast evolving lineages, instead of forming a clump of close relatives in the phylogenetic tree. Significant overlap of the fast evolving proteins in both clades indicates parallel evolution. The functions of the fast evolving proteins suggest that the caterpillars developed tolerance to cycad toxins with a range of mechanisms including autophagy of damaged cells, removal of cell debris by macrophages, and more active cell proliferation.


Subject(s)
Butterflies/genetics , Cycadopsida/toxicity , Evolution, Molecular , Feeding Behavior , Animals , Butterflies/classification , Butterflies/physiology , Genetic Speciation , Genome, Insect , Phylogeny
5.
Yeast ; 40(11): 511-539, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37921426

ABSTRACT

Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.


Subject(s)
Forests , Tropical Climate , Animals , Biodiversity , Ecosystem , Plants
6.
J Nat Prod ; 86(7): 1779-1785, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37382166

ABSTRACT

The hydroxylated and diacetylated cyclo-l-Trp-l-Leu derivative (-)-protubonine B was isolated from a culture of Aspergillus ustus 3.3904. Genome mining led to the identification of a putative biosynthetic gene cluster coding for a bimodular nonribosomal peptide synthetase, a flavin-dependent monooxygenase, and two acetyltransferases. Heterologous expression of the pbo cluster in Aspergillus nidulans showed that it is responsible for the formation of the isolated metabolite. Gene deletion experiments and structural elucidation of the isolated intermediates confirmed the biosynthetic steps. In vitro experiments with the recombinant protein proved that the flavin-dependent oxygenase is responsible for stereospecific hydroxylation at the indole ring accompanied by pyrrolidine ring formation.


Subject(s)
Aspergillus nidulans , Oxygenases , Oxygenases/genetics , Hydroxylation , Aspergillus nidulans/genetics , Flavins/genetics , Multigene Family
7.
Proc Natl Acad Sci U S A ; 116(13): 6232-6237, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30877254

ABSTRACT

For centuries, biologists have used phenotypes to infer evolution. For decades, a handful of gene markers have given us a glimpse of the genotype to combine with phenotypic traits. Today, we can sequence entire genomes from hundreds of species and gain yet closer scrutiny. To illustrate the power of genomics, we have chosen skipper butterflies (Hesperiidae). The genomes of 250 representative species of skippers reveal rampant inconsistencies between their current classification and a genome-based phylogeny. We use a dated genomic tree to define tribes (six new) and subtribes (six new), to overhaul genera (nine new) and subgenera (three new), and to display convergence in wing patterns that fooled researchers for decades. We find that many skippers with similar appearance are distantly related, and several skippers with distinct morphology are close relatives. These conclusions are strongly supported by different genomic regions and are consistent with some morphological traits. Our work is a forerunner to genomic biology shaping biodiversity research.


Subject(s)
Butterflies/classification , Butterflies/genetics , Genome, Insect , Genotype , Phylogeny , Wings, Animal/anatomy & histology , Animals , Biodiversity , Biological Mimicry , Computational Biology/methods , Genomics , Lepidoptera/classification , Lepidoptera/genetics , Multigene Family , Phenotype , Species Specificity
8.
Proc Natl Acad Sci U S A ; 116(5): 1669-1678, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30642971

ABSTRACT

Since its accidental introduction to Massachusetts in the late 1800s, the European gypsy moth (EGM; Lymantria dispar dispar) has become a major defoliator in North American forests. However, in part because females are flightless, the spread of the EGM across the United States and Canada has been relatively slow over the past 150 years. In contrast, females of the Asian gypsy moth (AGM; Lymantria dispar asiatica) subspecies have fully developed wings and can fly, thereby posing a serious economic threat if populations are established in North America. To explore the genetic determinants of these phenotypic differences, we sequenced and annotated a draft genome of L. dispar and used it to identify genetic variation between EGM and AGM populations. The 865-Mb gypsy moth genome is the largest Lepidoptera genome sequenced to date and encodes ∼13,300 proteins. Gene ontology analyses of EGM and AGM samples revealed divergence between these populations in genes enriched for several gene ontology categories related to muscle adaptation, chemosensory communication, detoxification of food plant foliage, and immunity. These genetic differences likely contribute to variations in flight ability, chemical sensing, and pathogen interactions among EGM and AGM populations. Finally, we use our new genomic and transcriptomic tools to provide insights into genome-wide gene-expression changes of the gypsy moth after viral infection. Characterizing the immunological response of gypsy moths to virus infection may aid in the improvement of virus-based bioinsecticides currently used to control larval populations.


Subject(s)
Host Microbial Interactions/genetics , Moths/genetics , Moths/virology , Animals , Canada , Cell Line , Female , Genetic Variation/genetics , Larva/genetics , Larva/virology , Massachusetts , Sequence Analysis, DNA/methods
9.
An Acad Bras Cienc ; 93(2): e20200799, 2021.
Article in English | MEDLINE | ID: mdl-33950143

ABSTRACT

Epoxy systems are widely applied as adhesives in the aerospace industry. They have excellent adhesion properties, however, being thermosetting, epoxy systems show fracture brittleness characteristics. Polysulfide and polymercaptans are good options to increase the flexibility of the epoxy adhesive. Thermal analysis techniques are generally used to evaluate the curing degree of epoxy systems. In most cases, when infrared (IR) analysis is used, it is employed qualitatively. This paper presents the reaction study of a DGEBA epoxy prepolymer with diethylenetriamine (DETA) and linear and branched dodecyl mercaptans as flexibilizers. Conversion data and curing time were assessed qualitatively and quantitatively by Fourier Transform Infrared Spectroscopy (FT-IR) in the medium infrared region (MIR) and in the near infrared region, using near infrared reflectance accessory (NIRA). NIRA methodology showed satisfactory results, with errors between 3 and 7%, especially in samples with lower amine contents. Mechanical tests confirmed the flexibilization of the cured epoxy system by the addition of mercaptans, indicating a lower crosslinking degree in the matrix. Young's modulus (E) significantly decreased from 2017 MPa to 578 MPa with the addition of approximately 20 wt% of normal dodecyl mercaptan to the epoxy system.


Subject(s)
Epoxy Resins , Sulfhydryl Compounds , Spectroscopy, Fourier Transform Infrared
10.
Genome ; 63(9): 407-436, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32579871

ABSTRACT

We report one year (2013-2014) of biomonitoring an insect community in a tropical old-growth rain forest, during construction of an industrial-level geothermal electricity project. This is the first-year reaction by the species-rich insect biodiversity; six subsequent years are being analyzed now. The site is on the margin of a UNESCO Natural World Heritage Site, Área de Conservación Guanacaste (ACG), in northwestern Costa Rica. This biomonitoring is part of Costa Rica's ongoing efforts to sustainably retain its wild biodiversity through biodevelopmental integration with its societies. Essential tools are geothermal engineering needs, entomological knowledge, insect species-rich forest, government-NGO integration, common sense, DNA barcoding for species-level identification, and Malaise traps. This research is tailored for integration with its society at the product level. We combine an academic view with on-site engineering decisions. This biomonitoring requires alpha-level DNA barcoding combined with centuries of morphology-based entomological taxonomy and ecology. Not all desired insect community analyses are performed; they are for data from subsequent years combined with this year. We provide enough analysis to be used by both guilds now. This biomonitoring has shown, for the first year, that the geothermal project impacts only the biodiversity within a zone less than 50 m from the project margin.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Geothermal Energy , Insecta/genetics , Rainforest , Animals , Costa Rica , DNA , Ecology , Entomology , Moths/genetics , Species Specificity
11.
Proc Natl Acad Sci U S A ; 114(36): 9641-9646, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28830993

ABSTRACT

Many animals are inhabited by microbial symbionts that influence their hosts' development, physiology, ecological interactions, and evolutionary diversification. However, firm evidence for the existence and functional importance of resident microbiomes in larval Lepidoptera (caterpillars) is lacking, despite the fact that these insects are enormously diverse, major agricultural pests, and dominant herbivores in many ecosystems. Using 16S rRNA gene sequencing and quantitative PCR, we characterized the gut microbiomes of wild leaf-feeding caterpillars in the United States and Costa Rica, representing 124 species from 15 families. Compared with other insects and vertebrates assayed using the same methods, the microbes that we detected in caterpillar guts were unusually low-density and variable among individuals. Furthermore, the abundance and composition of leaf-associated microbes were reflected in the feces of caterpillars consuming the same plants. Thus, microbes ingested with food are present (although possibly dead or dormant) in the caterpillar gut, but host-specific, resident symbionts are largely absent. To test whether transient microbes might still contribute to feeding and development, we conducted an experiment on field-collected caterpillars of the model species Manduca sexta Antibiotic suppression of gut bacterial activity did not significantly affect caterpillar weight gain, development, or survival. The high pH, simple gut structure, and fast transit times that typify caterpillar digestive physiology may prevent microbial colonization. Moreover, host-encoded digestive and detoxification mechanisms likely render microbes unnecessary for caterpillar herbivory. Caterpillars illustrate the potential ecological and evolutionary benefits of independence from symbionts, a lifestyle that may be widespread among animals.


Subject(s)
Gastrointestinal Microbiome , Lepidoptera/microbiology , Animals , Biodiversity , Food Chain , Food Microbiology , Gastrointestinal Microbiome/genetics , Herbivory , Larva/growth & development , Larva/microbiology , Lepidoptera/growth & development , Lepidoptera/physiology , Manduca/growth & development , Manduca/microbiology , Manduca/physiology , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics , Symbiosis
12.
Proc Natl Acad Sci U S A ; 114(28): 7379-7384, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28652351

ABSTRACT

Whiteness, although frequently apparent on the wings, legs, antennae, or bodies of many species of moths and butterflies, along with other colors and shades, has often escaped our attention. Here, we investigate the nanostructure and microstructure of white spots on the wings of Carystoides escalantei, a dusk-active and shade-inhabiting Costa Rican rain forest butterfly (Hesperiidae). On both males and females, two types of whiteness occur: angle dependent (dull or bright) and angle independent, which differ in the microstructure, orientation, and associated properties of their scales. Some spots on the male wings are absent from the female wings. Whether the angle-dependent whiteness is bright or dull depends on the observation directions. The angle-dependent scales also show enhanced retro-reflection. We speculate that the biological functions and evolution of Carystoides spot patterns, scale structures, and their varying whiteness are adaptations to butterfly's low light habitat and to airflow experienced on the wing base vs. wing tip.


Subject(s)
Butterflies/physiology , Wings, Animal/physiology , Animals , Color , Communication , Female , Male , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Movement , Nanoparticles , Sex Factors , Sexual Behavior, Animal , Species Specificity
13.
Proc Natl Acad Sci U S A ; 114(31): 8313-8318, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716927

ABSTRACT

DNA sequencing brings another dimension to exploration of biodiversity, and large-scale mitochondrial DNA cytochrome oxidase I barcoding has exposed many potential new cryptic species. Here, we add complete nuclear genome sequencing to DNA barcoding, ecological distribution, natural history, and subtleties of adult color pattern and size to show that a widespread neotropical skipper butterfly known as Udranomia kikkawai (Weeks) comprises three different species in Costa Rica. Full-length barcodes obtained from all three century-old Venezuelan syntypes of U. kikkawai show that it is a rainforest species occurring from Costa Rica to Brazil. The two new species are Udranomia sallydaleyae Burns, a dry forest denizen occurring from Costa Rica to Mexico, and Udranomia tomdaleyi Burns, which occupies the junction between the rainforest and dry forest and currently is known only from Costa Rica. Whereas the three species are cryptic, differing but slightly in appearance, their complete nuclear genomes totaling 15 million aligned positions reveal significant differences consistent with their 0.00065-Mbp (million base pair) mitochondrial barcodes and their ecological diversification. DNA barcoding of tropical insects reared by a massive inventory suggests that the presence of cryptic species is a widespread phenomenon and that further studies will substantially increase current estimates of insect species richness.


Subject(s)
Butterflies/classification , Butterflies/genetics , DNA Barcoding, Taxonomic/methods , DNA, Mitochondrial/genetics , Moths/classification , Moths/genetics , Animals , Base Sequence , Biodiversity , Costa Rica , Electron Transport Complex IV/genetics , Phylogeny , Sequence Analysis, DNA , Tropical Climate
14.
BMC Genomics ; 19(1): 219, 2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29580219

ABSTRACT

BACKGROUND: Although high-throughput sequencers (HTS) have largely displaced their Sanger counterparts, the short read lengths and high error rates of most platforms constrain their utility for amplicon sequencing. The present study tests the capacity of single molecule, real-time (SMRT) sequencing implemented on the SEQUEL platform to overcome these limitations, employing 658 bp amplicons of the mitochondrial cytochrome c oxidase I gene as a model system. RESULTS: By examining templates from more than 5000 species and 20,000 specimens, the performance of SMRT sequencing was tested with amplicons showing wide variation in GC composition and varied sequence attributes. SMRT and Sanger sequences were very similar, but SMRT sequencing provided more complete coverage, especially for amplicons with homopolymer tracts. Because it can characterize amplicon pools from 10,000 DNA extracts in a single run, the SEQUEL can reduce greatly reduce sequencing costs in comparison to first (Sanger) and second generation platforms (Illumina, Ion). CONCLUSIONS: SMRT analysis generates high-fidelity sequences from amplicons with varying GC content and is resilient to homopolymer tracts. Analytical costs are low, substantially less than those for first or second generation sequencers. When implemented on the SEQUEL platform, SMRT analysis enables massive amplicon characterization because each instrument can recover sequences from more than 5 million DNA extracts a year.


Subject(s)
Arthropods/genetics , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Animals , Arthropods/classification , Genetic Variation
15.
Proc Natl Acad Sci U S A ; 111(22): 8007-12, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24808136

ABSTRACT

Conventional assessments of ecosystem sample composition are based on morphology-based or DNA barcode identification of individuals. Both approaches are costly and time-consuming, especially when applied to the large number of specimens and taxa commonly included in ecological investigations. Next-generation sequencing approaches can overcome the bottleneck of individual specimen isolation and identification by simultaneously sequencing specimens of all taxa in a bulk mixture. Here we apply multiple parallel amplification primers, multiple DNA barcode markers, 454-pyrosequencing, and Illumina MiSeq sequencing to the same sample to maximize recovery of the arthropod macrobiome and the bacterial and other microbial microbiome of a bulk arthropod sample. We validate this method with a complex sample containing 1,066 morphologically distinguishable arthropods from a tropical terrestrial ecosystem with high taxonomic diversity. Multiamplicon next-generation DNA barcoding was able to recover sequences corresponding to 91% of the distinguishable individuals in a bulk environmental sample, as well as many species present as undistinguishable tissue. 454-pyrosequencing was able to recover 10 more families of arthropods and 30 more species than did conventional Sanger sequencing of each individual specimen. The use of other loci (16S and 18S ribosomal DNA gene regions) also added the detection of species of microbes associated with these terrestrial arthropods. This method greatly decreases the time and money necessary to perform DNA-based comparisons of biodiversity among ecosystem samples. This methodology opens the door to much cheaper and increased capacity for ecological and evolutionary studies applicable to a wide range of socio-economic issues, as well as a basic understanding of how the world works.


Subject(s)
Arthropods/chemistry , Biodiversity , Ecological Parameter Monitoring/methods , Electron Transport Complex IV/genetics , Microbiota/genetics , Animals , Costa Rica , DNA Barcoding, Taxonomic/methods , Ecosystem , Metagenomics/methods , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA/methods
16.
Genome ; 59(9): 641-60, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27584861

ABSTRACT

The 37-year ongoing inventory of the estimated 15 000 species of Lepidoptera living in the 125 000 terrestrial hectares of Area de Conservacion Guanacaste, northwestern Costa Rica, has DNA barcode documented 11 000+ species, and the simultaneous inventory of at least 6000+ species of wild-caught caterpillars, plus 2700+ species of parasitoids. The inventory began with Victorian methodologies and species-level perceptions, but it was transformed in 2004 by the full application of DNA barcoding for specimen identification and species discovery. This tropical inventory of an extraordinarily species-rich and complex multidimensional trophic web has relied upon the sequencing services provided by the Canadian Centre for DNA Barcoding, and the informatics support from BOLD, the Barcode of Life Data Systems, major tools developed by the Centre for Biodiversity Genomics at the Biodiversity Institute of Ontario, and available to all through couriers and the internet. As biodiversity information flows from these many thousands of undescribed and often look-alike species through their transformations to usable product, we see that DNA barcoding, firmly married to our centuries-old morphology-, ecology-, microgeography-, and behavior-based ways of taxonomizing the wild world, has made possible what was impossible before 2004. We can now work with all the species that we find, as recognizable species-level units of biology. In this essay, we touch on some of the details of the mechanics of actually using DNA barcoding in an inventory.


Subject(s)
DNA Barcoding, Taxonomic , Lepidoptera/classification , Lepidoptera/genetics , Animals , Biodiversity , Cluster Analysis , Conservation of Natural Resources , Costa Rica , Tropical Climate
17.
Conserv Biol ; 30(3): 506-19, 2016 06.
Article in English | MEDLINE | ID: mdl-27111576

ABSTRACT

Citizen science has been gaining momentum in the United States and Europe, where citizens are literate and often interested in science. However, in developing countries, which have a dire need for environmental data, such programs are slow to emerge, despite the large and untapped human resources in close proximity to areas of high biodiversity and poorly known floras and faunas. Thus, we propose that the parataxonomist and paraecologist approach, which originates from citizen-based science, is well suited to rural areas in developing countries. Being a paraecologist or a parataxonomist is a vocation and entails full-time employment underpinned by extensive training, whereas citizen science involves the temporary engagement of volunteers. Both approaches have their merits depending on the context and objectives of the research. We examined 4 ongoing paraecologist or parataxonomist programs in Costa Rica, India, Papua New Guinea, and southern Africa and compared their origins, long-term objectives, implementation strategies, activities, key challenges, achievements, and implications for resident communities. The programs supported ongoing research on biodiversity assessment, monitoring, and management, and participants engaged in non-academic capacity development in these fields. The programs in Southern Africa related to specific projects, whereas the programs in Costa Rica, India, and Papua New Guinea were designed for the long term, provided sufficient funding was available. The main focus of the paraecologists' and parataxonomists' activities ranged from collection and processing of specimens (Costa Rica and Papua New Guinea) or of socioeconomic and natural science data (India and Southern Africa) to communication between scientists and residents (India and Southern Africa). As members of both the local land user and research communities, paraecologists and parataxonomists can greatly improve the flow of biodiversity information to all users, from local stakeholders to international academia.


Subject(s)
Community Participation , Conservation of Natural Resources , Social Change , Africa, Southern , Classification , Costa Rica , Ecology , Europe , Humans , India
18.
Cladistics ; 31(6): 579-592, 2015 Dec.
Article in English | MEDLINE | ID: mdl-34753273

ABSTRACT

To understand the evolutionary history of Lymantriinae and test the present higher-level classification, we performed the first broad-scale molecular phylogenetic analysis of the subfamily, based on 154 exemplars representing all recognized tribes and drawn from all major biogeographical regions. We used two mitochondrial genes (cytochrome c oxidase subunit I and 16S ribosomal RNA) and six nuclear genes (elongation factor-1α, carbamoylphosphate synthase domain protein, ribosomal protein S5, cytosolic malate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase and wingless). Data matrices (in total 5424 bp) were analysed by parsimony and model-based evolutionary methods (maximum likelihood and Bayesian inference). Based on the results of the analyses, we present a new phylogenetic classification for Lymantriinae composed of seven well-supported tribes, two of which are proposed here as new: Arctornithini, Leucomini, Lymantriini, Orgyiini, Nygmiini, Daplasini trib. nov. and Locharnini trib. nov. We discuss the internal structure of each of these tribes and address some of the more complex problems with the genus-level classification, particularly within Orgyiini and Nygmiini.

19.
BMC Evol Biol ; 14: 153, 2014 07 09.
Article in English | MEDLINE | ID: mdl-25005355

ABSTRACT

BACKGROUND: Skipper butterflies (Hesperiidae) are a relatively well-studied family of Lepidoptera. However, a combination of DNA barcodes, morphology, and natural history data has revealed several cryptic species complexes within them. Here, we investigate three DNA barcode lineages of what has been identified as Urbanus belli (Hesperiidae, Eudaminae) in Área de Conservación Guanacaste (ACG), northwestern Costa Rica. RESULTS: Although no morphological traits appear to distinguish among the three, congruent nuclear and mitochondrial lineage patterns show that "Urbanus belli" in ACG is a complex of three sympatric species. A single strain of Wolbachia present in two of the three cryptic species indicates that Urbanus segnestami Burns (formerly Urbanus belliDHJ01), Urbanus bernikerni Burns (formerly Urbanus belliDHJ02), and Urbanus ehakernae Burns (formerly Urbanus belliDHJ03) may be biologically separated by Wolbachia, as well as by their genetics. Use of parallel sequencing through 454-pyrosequencing improved the utility of ITS2 as a phylogenetic marker and permitted examination of the intra- and interlineage relationships of ITS2 variants within the species complex. Interlineage, intralineage and intragenomic compensatory base pair changes were discovered in the secondary structure of ITS2. CONCLUSION: These findings corroborate the existence of three cryptic species. Our confirmation of a novel cryptic species complex, initially suggested by DNA barcode lineages, argues for using a multi-marker approach coupled with next-generation sequencing for exploration of other suspected species complexes.


Subject(s)
Butterflies/classification , Butterflies/genetics , Animals , Butterflies/microbiology , Cell Nucleus/genetics , Costa Rica , DNA, Ribosomal Spacer/genetics , High-Throughput Nucleotide Sequencing , Mitochondria/genetics , Phylogeny , Wolbachia/genetics
20.
Proc Natl Acad Sci U S A ; 108(2): 668-73, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21199954

ABSTRACT

Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.


Subject(s)
Drosophila/physiology , Wings, Animal/metabolism , Animals , Biodiversity , Body Patterning , Female , Genetic Variation , Insecta , Male , Microscopy, Electron, Scanning , Pigmentation , Sex Factors , Sexual Behavior, Animal , Species Specificity , Wings, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL