Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(24): 5970-5984.e18, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34793701

ABSTRACT

Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.


Subject(s)
Gene Deletion , Gene Duplication , Germ Cells/metabolism , Recombination, Genetic/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/deficiency , Ataxia Telangiectasia Mutated Proteins/metabolism , Base Sequence , Chromatids/metabolism , Chromosomes, Mammalian/genetics , Crosses, Genetic , DNA Breaks, Double-Stranded , DNA, Circular/genetics , Female , Genome , Haplotypes/genetics , Homologous Recombination/genetics , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Mutagenesis, Insertional/genetics , Mutation/genetics
2.
Cell ; 183(6): 1650-1664.e15, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33125898

ABSTRACT

Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.


Subject(s)
Alleles , CRISPR-Associated Protein 9/metabolism , Chromosomes, Human/genetics , Embryo, Mammalian/metabolism , Animals , Base Sequence , Blastocyst/metabolism , Cell Cycle/genetics , Cell Line , Chromosome Deletion , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , Embryo Implantation/genetics , Eye Proteins/genetics , Fertilization , Gene Editing , Gene Rearrangement/genetics , Genetic Loci , Genome, Human , Genotype , Heterozygote , Human Embryonic Stem Cells/metabolism , Humans , INDEL Mutation/genetics , Mice , Mitosis , Open Reading Frames/genetics , Polymorphism, Single Nucleotide/genetics
3.
Mol Cell ; 84(3): 447-462.e10, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38244544

ABSTRACT

Tumor suppressor BRCA2 functions in homology-directed repair (HDR), the protection of stalled replication forks, and the suppression of replicative gaps, but their relative contributions to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for fork protection and gap suppression but not HDR. In mice, the loss of fork protection/gap suppression does not compromise genome stability or shorten tumor latency. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection/gap suppression defects are also observed in Brca2 heterozygous cells, likely due to reduced RAD51 stabilization at stalled forks/gaps. Gaps arise from PRIMPOL activity, which is associated with 5-hydroxymethyl-2'-deoxyuridine sensitivity due to the formation of SMUG1-generated abasic sites and is exacerbated by poly(ADP-ribose) polymerase (PARP) inhibition. However, HDR proficiency has the major role in mitigating sensitivity to chemotherapeutics, including PARP inhibitors.


Subject(s)
BRCA2 Protein , DNA Replication , Rad51 Recombinase , Animals , Humans , Mice , BRCA2 Protein/metabolism , DNA Repair , Genomic Instability , Genomics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombinational DNA Repair
4.
Cell ; 167(3): 695-708.e16, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27745971

ABSTRACT

Heritability and genome stability are shaped by meiotic recombination, which is initiated via hundreds of DNA double-strand breaks (DSBs). The distribution of DSBs throughout the genome is not random, but mechanisms molding this landscape remain poorly understood. Here, we exploit genome-wide maps of mouse DSBs at unprecedented nucleotide resolution to uncover previously invisible spatial features of recombination. At fine scale, we reveal a stereotyped hotspot structure-DSBs occur within narrow zones between methylated nucleosomes-and identify relationships between SPO11, chromatin, and the histone methyltransferase PRDM9. At large scale, DSB formation is suppressed on non-homologous portions of the sex chromosomes via the DSB-responsive kinase ATM, which also shapes the autosomal DSB landscape at multiple size scales. We also provide a genome-wide analysis of exonucleolytic DSB resection lengths and elucidate spatial relationships between DSBs and recombination products. Our results paint a comprehensive picture of features governing successive steps in mammalian meiotic recombination.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Genomic Instability/genetics , Homologous Recombination , Meiosis/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA Methylation , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mice , Mice, Inbred C57BL , Nucleosomes/enzymology , Nucleosomes/genetics , X Chromosome/genetics , Y Chromosome/genetics
6.
Nature ; 619(7970): 640-649, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37344589

ABSTRACT

Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.


Subject(s)
DNA-Binding Proteins , Homologous Recombination , Multiprotein Complexes , Humans , Cryoelectron Microscopy , DNA Replication , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/ultrastructure , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Neoplasms/genetics , Nucleoproteins/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Rad51 Recombinase/chemistry , Rad51 Recombinase/metabolism , Rad51 Recombinase/ultrastructure , Substrate Specificity
7.
Mol Cell ; 78(6): 1252-1263.e3, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32362315

ABSTRACT

Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.


Subject(s)
Crossing Over, Genetic/physiology , Homologous Recombination/physiology , Meiosis/physiology , Animals , Chromosome Segregation/genetics , Crossing Over, Genetic/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA, Cruciform/genetics , DNA, Cruciform/metabolism , Homologous Recombination/genetics , Male , Meiosis/genetics , Mice , Mice, Inbred DBA , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Nucleic Acid Heteroduplexes/genetics
8.
EMBO J ; 42(20): e110844, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37661798

ABSTRACT

Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.


Subject(s)
Neoplasms , Rad51 Recombinase , Animals , Mice , Aging/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic , DNA Damage , DNA Repair , Homologous Recombination , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
9.
Cell ; 145(4): 529-42, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21565612

ABSTRACT

Breast cancer suppressor BRCA2 is critical for maintenance of genomic integrity and resistance to agents that damage DNA or collapse replication forks, presumably through homology-directed repair of double-strand breaks (HDR). Using single-molecule DNA fiber analysis, we show here that nascent replication tracts created before fork stalling with hydroxyurea are degraded in the absence of BRCA2 but are stable in wild-type cells. BRCA2 mutational analysis reveals that a conserved C-terminal site involved in stabilizing RAD51 filaments, but not in loading RAD51 onto DNA, is essential for this fork protection but dispensable for HDR. RAD51 filament disruption in wild-type cells phenocopies BRCA2 deficiency. BRCA2 prevents chromosomal aberrations on replication stalling, which are alleviated by inhibition of MRE11, the nuclease responsible for this form of fork instability. Thus, BRCA2 prevents rather than repairs nucleolytic lesions at stalled replication forks to maintain genomic integrity and hence likely suppresses tumorigenesis through this replication-specific function.


Subject(s)
BRCA2 Protein/metabolism , DNA Breaks, Double-Stranded , DNA Replication , DNA-Binding Proteins/metabolism , Genomic Instability , Amino Acid Sequence , Animals , Cell Line , Cell Survival , DNA Repair , Humans , MRE11 Homologue Protein , Molecular Sequence Data , Sequence Alignment
10.
Cell ; 144(5): 719-31, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21376234

ABSTRACT

The nonrandom distribution of meiotic recombination influences patterns of inheritance and genome evolution, but chromosomal features governing this distribution are poorly understood. Formation of the DNA double-strand breaks (DSBs) that initiate recombination results in the accumulation of Spo11 protein covalently bound to small DNA fragments. By sequencing these fragments, we uncover a genome-wide DSB map of unprecedented resolution and sensitivity. We use this map to explore how DSB distribution is influenced by large-scale chromosome structures, chromatin, transcription factors, and local sequence composition. Our analysis offers mechanistic insight into DSB formation and early processing steps, supporting the view that the recombination terrain is molded by combinatorial and hierarchical interaction of factors that work on widely different size scales. This map illuminates the occurrence of DSBs in repetitive DNA elements, repair of which can lead to chromosomal rearrangements. We also discuss implications for evolutionary dynamics of recombination hot spots.


Subject(s)
Genome, Fungal , Saccharomyces cerevisiae/genetics , DNA Breaks, Double-Stranded , Endodeoxyribonucleases/metabolism , Genome-Wide Association Study , Recombination, Genetic , Saccharomyces cerevisiae Proteins/metabolism
11.
Nature ; 582(7812): 426-431, 2020 06.
Article in English | MEDLINE | ID: mdl-32461690

ABSTRACT

Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation1,2. How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.


Subject(s)
DNA Breaks, Double-Stranded , Meiosis , Pseudoautosomal Regions/genetics , Pseudoautosomal Regions/metabolism , Animals , Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly , Chromosome Pairing/genetics , DNA-Binding Proteins , Female , Heterochromatin/genetics , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Kinetics , Male , Meiosis/genetics , Mice , Minisatellite Repeats/genetics , Oocytes/metabolism , Recombination, Genetic/genetics , Sex Characteristics , Sister Chromatid Exchange , Spermatocytes/metabolism , Ubiquitin-Protein Ligases/metabolism
12.
Proc Natl Acad Sci U S A ; 119(38): e2202727119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36099300

ABSTRACT

Mutations in homologous recombination (HR) genes, including BRCA1, BRCA2, and the RAD51 paralog RAD51C, predispose to tumorigenesis and sensitize cancers to DNA-damaging agents and poly(ADP ribose) polymerase inhibitors. However, ∼800 missense variants of unknown significance have been identified for RAD51C alone, impairing cancer risk assessment and therapeutic strategies. Here, we interrogated >50 RAD51C missense variants, finding that mutations in residues conserved with RAD51 strongly predicted HR deficiency and disrupted interactions with other RAD51 paralogs. A cluster of mutations was identified in and around the Walker A box that led to impairments in HR, interactions with three other RAD51 paralogs, binding to single-stranded DNA, and ATP hydrolysis. We generated structural models of the two RAD51 paralog complexes containing RAD51C, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3. Together with our functional and biochemical analyses, the structural models predict ATP binding at the interface of RAD51C interactions with other RAD51 paralogs, similar to interactions between monomers in RAD51 filaments, and explain the failure of RAD51C variants in binding multiple paralogs. Ovarian cancer patients with variants in this cluster showed exceptionally long survival, which may be relevant to the reversion potential of the variants. This comprehensive analysis provides a framework for RAD51C variant classification. Importantly, it also provides insight into the functioning of the RAD51 paralog complexes.


Subject(s)
DNA-Binding Proteins , Homologous Recombination , Ovarian Neoplasms , Rad51 Recombinase , Tumor Suppressor Proteins , Adenosine Triphosphate/metabolism , DNA-Binding Proteins/genetics , Female , Humans , Mutation , Ovarian Neoplasms/genetics , Rad51 Recombinase/genetics , Tumor Suppressor Proteins/genetics
13.
Mol Cell ; 62(5): 777-87, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27259208

ABSTRACT

Genetic abnormalities are present in all tumor types, although the frequency and type can vary. Chromosome abnormalities include highly aberrant structures, particularly chromothriptic chromosomes. The generation of massive sequencing data has illuminated the scope of the mutational burden in cancer genomes, identifying patterns of mutations (mutation signatures), which have the potential to shed light on the relatedness and etiologies of cancers and impact therapy response. Some mutation patterns are clearly attributable to disruptions in pathways that maintain genomic integrity. Here we review recent advances in our understanding of genetic changes occurring in cancers and the roles of genome maintenance pathways.


Subject(s)
Chromosome Aberrations , DNA Damage , DNA Repair , DNA/genetics , Genome , Mutation , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chromothripsis , DNA/biosynthesis , DNA/chemistry , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Phenotype , Transcriptome
14.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34353917

ABSTRACT

The increasing complexity of different cell types revealed by single-cell analysis of tissues presents challenges in efficiently elucidating their functions. Here we show, using prostate as a model tissue, that primary organoids and freshly isolated epithelial cells can be CRISPR edited ex vivo using Cas9-sgRNA (guide RNA) ribotnucleoprotein complex technology, then orthotopically transferred in vivo into immunocompetent or immunodeficient mice to generate cancer models with phenotypes resembling those seen in traditional genetically engineered mouse models. Large intrachromosomal (∼2 Mb) or multigenic deletions can be engineered efficiently without the need for selection, including in isolated subpopulations to address cell-of-origin questions.


Subject(s)
Chromosome Deletion , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing/methods , Prostate/cytology , Adaptor Proteins, Signal Transducing/metabolism , Animals , CRISPR-Associated Protein 9/genetics , Epithelial Cells , Genes, Tumor Suppressor , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Organoids , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Guide, Kinetoplastida , Ribonucleoproteins/genetics , Transcriptional Regulator ERG/genetics , Xenograft Model Antitumor Assays
15.
Genes Dev ; 29(16): 1721-33, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26251527

ABSTRACT

Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombination maps in both males and females at two mouse hot spots located in different regions of the same chromosome. These include the most comprehensive maps of recombination hot spots in oocytes to date. One hot spot, located centrally on chromosome 1, behaved similarly in male and female meiosis: Crossovers and noncrossovers formed at comparable levels and ratios in both sexes. In contrast, at a distal hot spot, crossovers were recovered only in males even though noncrossovers were obtained at similar frequencies in both sexes. These findings reveal an example of extreme sex-specific bias in recombination outcome. We further found that estimates of relative DSB levels are surprisingly poor predictors of relative crossover frequencies between hot spots in males. Our results demonstrate that the outcome of mammalian meiotic recombination can be biased, that this bias can vary depending on location and cellular context, and that DSB frequency is not the only determinant of crossover frequency.


Subject(s)
Meiosis/genetics , Recombination, Genetic , Animals , Chromosome Mapping , DNA Breaks, Double-Stranded , Female , Male , Mice , Mice, Inbred C57BL , Sex Factors
16.
Nat Rev Mol Cell Biol ; 11(3): 196-207, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20177395

ABSTRACT

Mitotic homologous recombination promotes genome stability through the precise repair of DNA double-strand breaks and other lesions that are encountered during normal cellular metabolism and from exogenous insults. As a result, homologous recombination repair is essential during proliferative stages in development and during somatic cell renewal in adults to protect against cell death and mutagenic outcomes from DNA damage. Mutations in mammalian genes encoding homologous recombination proteins, including BRCA1, BRCA2 and PALB2, are associated with developmental abnormalities and tumorigenesis. Recent advances have provided a clearer understanding of the connections between these proteins and of the key steps of homologous recombination and DNA strand exchange.


Subject(s)
Genomic Instability , Mitosis/genetics , Neoplasms/genetics , Recombination, Genetic/genetics , Animals , DNA Breaks, Double-Stranded , DNA Breaks, Single-Stranded , DNA Repair , Humans , Models, Biological , Neoplasms/pathology
17.
Mol Cell ; 55(6): 829-842, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25201414

ABSTRACT

Breakpoint junctions of the chromosomal translocations that occur in human cancers display hallmarks of nonhomologous end-joining (NHEJ). In mouse cells, translocations are suppressed by canonical NHEJ (c-NHEJ) components, which include DNA ligase IV (LIG4), and instead arise from alternative NHEJ (alt-NHEJ). Here we used designer nucleases (ZFNs, TALENs, and CRISPR/Cas9) to introduce DSBs on two chromosomes to study translocation joining mechanisms in human cells. Remarkably, translocations were altered in cells deficient for LIG4 or its interacting protein XRCC4. Translocation junctions had significantly longer deletions and more microhomology, indicative of alt-NHEJ. Thus, unlike mouse cells, translocations in human cells are generated by c-NHEJ. Human cancer translocations induced by paired Cas9 nicks also showed a dependence on c-NHEJ, despite having distinct joining characteristics. These results demonstrate an unexpected and striking species-specific difference for common genomic rearrangements associated with tumorigenesis.


Subject(s)
DNA End-Joining Repair , DNA Ligases/genetics , DNA-Binding Proteins/genetics , Deoxyribonucleases/physiology , Translocation, Genetic/genetics , Animals , Chromosomes, Human , DNA Ligase ATP , Humans , Mice , Sequence Deletion , Species Specificity , Tumor Cells, Cultured
18.
PLoS Genet ; 15(10): e1008355, 2019 10.
Article in English | MEDLINE | ID: mdl-31584931

ABSTRACT

Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib, with the weakest phenotypes observed in RAD51B-deficient cells. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.


Subject(s)
DNA Repair/genetics , DNA-Binding Proteins/genetics , Homologous Recombination/genetics , Rad51 Recombinase/genetics , Cell Nucleus/genetics , Chromatids/genetics , DNA Damage/genetics , Genome, Human/genetics , HEK293 Cells , Humans , Mutation
19.
Genes Dev ; 27(8): 873-86, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23599345

ABSTRACT

Different organisms display widely different numbers of the programmed double-strand breaks (DSBs) that initiate meiotic recombination (e.g., hundreds per meiocyte in mice and humans vs. dozens in nematodes), but little is known about what drives these species-specific DSB set points or the regulatory pathways that control them. Here we examine male mice with a lowered dosage of SPO11, the meiotic DSB catalyst, to gain insight into the effect of reduced DSB numbers on mammalian chromosome dynamics. An approximately twofold DSB reduction was associated with the reduced ability of homologs to synapse along their lengths, provoking prophase arrest and, ultimately, sterility. In many spermatocytes, chromosome subsets displayed a mix of synaptic failure and synapsis with both homologous and nonhomologous partners ("chromosome tangles"). The X chromosome was nearly always involved in tangles, and small autosomes were involved more often than large ones. We conclude that homolog pairing requirements dictate DSB set points during meiosis. Importantly, our results reveal that karyotype is a key factor: Smaller autosomes and heteromorphic sex chromosomes become weak links when DSBs are reduced below a critical threshold. Unexpectedly, unsynapsed chromosome segments trapped in tangles displayed an elevated density of DSB markers later in meiotic prophase. The unsynapsed portion of the X chromosome in wild-type males also showed evidence that DSB numbers increased as prophase progressed. These findings point to the existence of a feedback mechanism that links DSB number and distribution with interhomolog interactions.


Subject(s)
DNA Breaks, Double-Stranded , Feedback, Physiological , Meiosis/genetics , Animals , Chromosomes/genetics , Chromosomes/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Male , Mice , Synaptonemal Complex/genetics , Synaptonemal Complex/metabolism
20.
Proc Natl Acad Sci U S A ; 114(14): 3696-3701, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28325870

ABSTRACT

Gene editing techniques have been extensively used to attempt to model recurrent genomic rearrangements found in tumor cells. These methods involve the induction of double-strand breaks at endogenous loci followed by the identification of breakpoint junctions within a population, which typically arise by nonhomologous end joining. The low frequency of these events, however, has hindered the cloning of cells with the desired rearrangement before oncogenic transformation. Here we present a strategy combining CRISPR-Cas9 technology and homology-directed repair to allow for the selection of human mesenchymal stem cells harboring the oncogenic translocation EWSR1-WT1 found in the aggressive desmoplastic small round cell tumor. The expression of the fusion transcript is under the control of the endogenous EWSR1 promoter and, importantly, can be conditionally expressed using Cre recombinase. This method is easily adapted to generate any cancer-relevant rearrangement.


Subject(s)
Gene Editing/methods , RNA-Binding Protein EWS/genetics , Translocation, Genetic , WT1 Proteins/genetics , CRISPR-Cas Systems , DNA Breaks, Double-Stranded , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL