Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.923
Filter
Add more filters

Publication year range
1.
Cell ; 187(9): 2305-2323.e33, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38614099

ABSTRACT

Cancer immunotherapy has transformed treatment possibilities, but its effectiveness differs significantly among patients, indicating the presence of alternative pathways for immune evasion. Here, we show that ITPRIPL1 functions as an inhibitory ligand of CD3ε, and its expression inhibits T cells in the tumor microenvironment. The binding of ITPRIPL1 extracellular domain to CD3ε on T cells significantly decreased calcium influx and ZAP70 phosphorylation, impeding initial T cell activation. Treatment with a neutralizing antibody against ITPRIPL1 restrained tumor growth and promoted T cell infiltration in mouse models across various solid tumor types. The antibody targeting canine ITPRIPL1 exhibited notable therapeutic efficacy against naturally occurring tumors in pet clinics. These findings highlight the role of ITPRIPL1 (or CD3L1, CD3ε ligand 1) in impeding T cell activation during the critical "signal one" phase. This discovery positions ITPRIPL1 as a promising therapeutic target against multiple tumor types.


Subject(s)
CD3 Complex , Lymphocyte Activation , T-Lymphocytes , Tumor Escape , Tumor Microenvironment , Animals , CD3 Complex/metabolism , CD3 Complex/immunology , Humans , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Dogs , Neoplasms/immunology , Cell Line, Tumor , Female , Protein Binding , ZAP-70 Protein-Tyrosine Kinase/metabolism , Antibodies, Neutralizing/immunology , Mice, Inbred C57BL
2.
Cell ; 186(21): 4546-4566.e27, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37769657

ABSTRACT

Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.

3.
Cell ; 184(17): 4464-4479.e19, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34384544

ABSTRACT

Emerging evidence supports that mitochondrial dysfunction contributes to systemic lupus erythematosus (SLE) pathogenesis. Here we show that programmed mitochondrial removal, a hallmark of mammalian erythropoiesis, is defective in SLE. Specifically, we demonstrate that during human erythroid cell maturation, a hypoxia-inducible factor (HIF)-mediated metabolic switch is responsible for the activation of the ubiquitin-proteasome system (UPS), which precedes and is necessary for the autophagic removal of mitochondria. A defect in this pathway leads to accumulation of red blood cells (RBCs) carrying mitochondria (Mito+ RBCs) in SLE patients and in correlation with disease activity. Antibody-mediated internalization of Mito+ RBCs induces type I interferon (IFN) production through activation of cGAS in macrophages. Accordingly, SLE patients carrying both Mito+ RBCs and opsonizing antibodies display the highest levels of blood IFN-stimulated gene (ISG) signatures, a distinctive feature of SLE.


Subject(s)
Interferon Type I/metabolism , Lupus Erythematosus, Systemic/metabolism , Mitochondria/metabolism , Myeloid Cells/metabolism , Adolescent , Basic Helix-Loop-Helix Transcription Factors/metabolism , Child , Child, Preschool , Erythroblasts/metabolism , Erythroblasts/ultrastructure , Erythrocytes/metabolism , Erythropoiesis , Humans , Mitophagy , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism
4.
Cell ; 182(2): 345-356.e16, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32589945

ABSTRACT

Pathogenic clostridial species secrete potent toxins that induce severe host tissue damage. Paeniclostridium sordellii lethal toxin (TcsL) causes an almost invariably lethal toxic shock syndrome associated with gynecological infections. TcsL is 87% similar to C. difficile TcdB, which enters host cells via Frizzled receptors in colon epithelium. However, P. sordellii infections target vascular endothelium, suggesting that TcsL exploits another receptor. Here, using CRISPR/Cas9 screening, we establish semaphorins SEMA6A and SEMA6B as TcsL receptors. We demonstrate that recombinant SEMA6A can protect mice from TcsL-induced edema. A 3.3 Å cryo-EM structure shows that TcsL binds SEMA6A with the same region that in TcdB binds structurally unrelated Frizzled. Remarkably, 15 mutations in this evolutionarily divergent surface are sufficient to switch binding specificity of TcsL to that of TcdB. Our findings establish semaphorins as physiologically relevant receptors for TcsL and reveal the molecular basis for the difference in tissue targeting and disease pathogenesis between highly related toxins.


Subject(s)
Bacterial Toxins/metabolism , Clostridium sordellii/metabolism , Semaphorins/metabolism , Animals , Bacterial Toxins/chemistry , Bacterial Toxins/toxicity , Binding Sites , CRISPR-Cas Systems/genetics , Cell Line , Cryoelectron Microscopy , Edema/pathology , Edema/prevention & control , Female , Humans , Lung/drug effects , Lung/pathology , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/therapeutic use , Semaphorins/chemistry , Semaphorins/genetics
5.
Cell ; 181(7): 1643-1660.e17, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32470396

ABSTRACT

Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer.


Subject(s)
Brain Neoplasms/immunology , Glioma/pathology , Tumor Microenvironment/immunology , Brain/immunology , Brain/metabolism , Brain Neoplasms/pathology , Female , Glioma/metabolism , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/immunology , Male , Microglia/metabolism , Neutrophils/metabolism , T-Lymphocytes/metabolism
6.
Immunity ; 56(2): 420-432.e7, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36792575

ABSTRACT

Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Animals , Plasmodium falciparum , Epitopes , Protozoan Proteins , Antigens, Protozoan , Antibodies, Monoclonal , Antibodies, Protozoan , Malaria, Falciparum/prevention & control
7.
Immunity ; 56(2): 406-419.e7, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36792574

ABSTRACT

Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 µg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.


Subject(s)
Culicidae , Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Humans , Plasmodium falciparum , Culicidae/metabolism , Protozoan Proteins , Antibodies, Monoclonal , Malaria, Falciparum/prevention & control , Antibodies, Protozoan
8.
Cell ; 171(3): 557-572.e24, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053968

ABSTRACT

Chromosome conformation capture technologies have revealed important insights into genome folding. Yet, how spatial genome architecture is related to gene expression and cell fate remains unclear. We comprehensively mapped 3D chromatin organization during mouse neural differentiation in vitro and in vivo, generating the highest-resolution Hi-C maps available to date. We found that transcription is correlated with chromatin insulation and long-range interactions, but dCas9-mediated activation is insufficient for creating TAD boundaries de novo. Additionally, we discovered long-range contacts between gene bodies of exon-rich, active genes in all cell types. During neural differentiation, contacts between active TADs become less pronounced while inactive TADs interact more strongly. An extensive Polycomb network in stem cells is disrupted, while dynamic interactions between neural transcription factors appear in vivo. Finally, cell type-specific enhancer-promoter contacts are established concomitant to gene expression. This work shows that multiple factors influence the dynamics of chromatin interactions in development.


Subject(s)
Chromatin/metabolism , Genome , Neurogenesis , Animals , CCCTC-Binding Factor , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Exons , Gene Expression , Gene Regulatory Networks , Mice , Promoter Regions, Genetic , Repressor Proteins/metabolism , Transcription Factors/metabolism
9.
Genes Dev ; 38(1-2): 70-94, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38316520

ABSTRACT

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.


Subject(s)
Melanoma , Humans , Melanoma/genetics , Microphthalmia-Associated Transcription Factor/genetics , DNA Damage , Genomic Instability/genetics , DNA
10.
Immunity ; 55(9): 1680-1692.e8, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35977542

ABSTRACT

Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25°C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Animals , Antibodies, Blocking , Antibodies, Monoclonal , Antibodies, Protozoan , Antibody Formation , Antigens, Protozoan , Humans , Malaria, Falciparum/prevention & control , Membrane Glycoproteins , Mice , Plasmodium falciparum , Protozoan Proteins , Vaccination
11.
Mol Cell ; 83(12): 1983-2002.e11, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37295433

ABSTRACT

The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Introns/genetics , Prostatic Neoplasms/metabolism , RNA Splicing/genetics , Spliceosomes/metabolism , Signal Transduction , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Cell Line, Tumor , Prostatic Neoplasms, Castration-Resistant/genetics
12.
Nat Immunol ; 19(4): 375-385, 2018 04.
Article in English | MEDLINE | ID: mdl-29556000

ABSTRACT

Allergic inflammation has crucial roles in allergic diseases such as asthma. It is therefore important to understand why and how the immune system responds to allergens. Here we found that full-length interleukin 33 (IL-33FL), an alarmin cytokine with critical roles in type 2 immunity and asthma, functioned as a protease sensor that detected proteolytic activities associated with various environmental allergens across four kingdoms, including fungi, house dust mites, bacteria and pollens. When exposed to allergen proteases, IL-33FL was rapidly cleaved in its central 'sensor' domain, which led to activation of the production of type 2 cytokines in group 2 innate lymphoid cells. Preventing cleavage of IL-33FL reduced allergic airway inflammation. Our findings reveal a molecular mechanism for the rapid induction of allergic type 2 inflammation following allergen exposure, with important implications for allergic diseases.


Subject(s)
Allergens/immunology , Hypersensitivity/immunology , Inflammation/immunology , Interleukin-33/immunology , Animals , Humans , Hypersensitivity/metabolism , Inflammation/metabolism , Interleukin-33/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteolysis
13.
Immunity ; 54(4): 737-752.e10, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33740418

ABSTRACT

Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.


Subject(s)
Epitopes/genetics , Histocompatibility Antigens Class I/genetics , Leukemia, Myeloid, Acute/genetics , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cell Line , Epigenesis, Genetic/genetics , Epigenesis, Genetic/immunology , Epitopes/immunology , Histocompatibility Antigens Class I/immunology , Humans , Immunotherapy/methods , Leukemia, Myeloid, Acute/immunology , Mice , Mice, Inbred NOD , Mice, SCID , Mutation/genetics , Mutation/immunology , Neoplastic Stem Cells/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Cytotoxic/immunology
14.
Cell ; 163(7): 1702-15, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26687358

ABSTRACT

The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs.


Subject(s)
AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing , Epitopes/chemistry , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV-1 , Hydrophobic and Hydrophilic Interactions , Immunoglobulin G/chemistry , Models, Molecular , Mutagenesis , Protein Conformation , Rabbits , env Gene Products, Human Immunodeficiency Virus/chemistry
15.
Nature ; 629(8010): 184-192, 2024 May.
Article in English | MEDLINE | ID: mdl-38600378

ABSTRACT

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents , Glucocorticoids , Inflammation , Macrophages , Mitochondria , Succinates , Animals , Female , Humans , Male , Mice , Anti-Inflammatory Agents/pharmacology , Carboxy-Lyases/metabolism , Carboxy-Lyases/antagonists & inhibitors , Citric Acid Cycle/drug effects , Citric Acid Cycle/genetics , Cytokines/immunology , Cytokines/metabolism , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Hydro-Lyases/deficiency , Hydro-Lyases/genetics , Inflammation/drug therapy , Inflammation/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Pyruvate Dehydrogenase Complex/metabolism , Receptors, Glucocorticoid/metabolism , Succinates/metabolism , Enzyme Activation/drug effects
16.
Genes Dev ; 36(11-12): 664-683, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35710139

ABSTRACT

Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.


Subject(s)
Endometrial Neoplasms , Sarcoma, Endometrial Stromal , Sarcoma , Chromatin , DNA-Binding Proteins/metabolism , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Female , Histones/metabolism , Humans , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Sarcoma/genetics , Sarcoma, Endometrial Stromal/genetics , Sarcoma, Endometrial Stromal/metabolism , Sarcoma, Endometrial Stromal/pathology , Translocation, Genetic/genetics
17.
Cell ; 156(3): 510-21, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24485457

ABSTRACT

The brain is the central organizer of food intake, matching the quality and quantity of the food sources with organismal needs. To ensure appropriate amino acid balance, many species reject a diet lacking one or several essential amino acids (EAAs) and seek out a better food source. Here, we show that, in Drosophila larvae, this behavior relies on innate sensing of amino acids in dopaminergic (DA) neurons of the brain. We demonstrate that the amino acid sensor GCN2 acts upstream of GABA signaling in DA neurons to promote avoidance of the EAA-deficient diet. Using real-time calcium imaging in larval brains, we show that amino acid imbalance induces a rapid and reversible activation of three DA neurons that are necessary and sufficient for food rejection. Taken together, these data identify a central amino-acid-sensing mechanism operating in specific DA neurons and controlling food intake.


Subject(s)
Amino Acids, Essential/metabolism , Drosophila melanogaster/physiology , Neurons/metabolism , Animals , Brain/cytology , Brain/metabolism , Drosophila Proteins/metabolism , Eating , Protein Kinases/metabolism , gamma-Aminobutyric Acid/metabolism
18.
Cell ; 159(1): 69-79, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25259921

ABSTRACT

The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans.


Subject(s)
Antibodies, Neutralizing/chemistry , HIV Antibodies/chemistry , HIV Envelope Protein gp120/immunology , HIV-1/chemistry , HIV-1/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Amino Acid Sequence , Antibodies, Neutralizing/metabolism , HIV Antibodies/metabolism , HIV Envelope Protein gp120/chemistry , Models, Molecular , Molecular Sequence Data , Sequence Alignment
19.
Nature ; 615(7952): 455-460, 2023 03.
Article in English | MEDLINE | ID: mdl-36813967

ABSTRACT

Mantle viscosity plays a key role in the Earth's internal dynamics and thermal history. Geophysical inferences of the viscosity structure, however, have shown large variability depending on the types of observables used or the assumptions imposed1-3. Here, we study the mantle viscosity structure by using the postseismic deformation following a deep (approximately 560 km) earthquake located near the bottom of the upper mantle. We apply independent component analysis4 to geodetic time series to successfully detect and extract the postseismic deformation induced by the moment magnitude 8.2, 2018 Fiji earthquake. To search for the viscosity structure that can explain the detected signal, we perform forward viscoelastic relaxation modelling5,6 with a range of viscosity structures. We find that our observation requires a relatively thin (approximately 100 km), low-viscosity (1017 to 1018 Pa s) layer at the bottom of the mantle transition zone. Such a weak zone could explain the slab flattening7 and orphaning8 observed in numerous subduction zones, which are otherwise challenging to explain in the whole mantle convection regime. The low-viscosity layer may result from superplasticity9 induced by the postspinel transition, weak CaSiO3 perovskite10, high water content11 or dehydration melting12.

20.
Nature ; 618(7966): 716-720, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225993

ABSTRACT

A density wave (DW) is a fundamental type of long-range order in quantum matter tied to self-organization into a crystalline structure. The interplay of DW order with superfluidity can lead to complex scenarios that pose a great challenge to theoretical analysis. In the past decades, tunable quantum Fermi gases have served as model systems for exploring the physics of strongly interacting fermions, including most notably magnetic ordering1, pairing and superfluidity2, and the crossover from a Bardeen-Cooper-Schrieffer superfluid to a Bose-Einstein condensate3. Here, we realize a Fermi gas featuring both strong, tunable contact interactions and photon-mediated, spatially structured long-range interactions in a transversely driven high-finesse optical cavity. Above a critical long-range interaction strength, DW order is stabilized in the system, which we identify via its superradiant light-scattering properties. We quantitatively measure the variation of the onset of DW order as the contact interaction is varied across the Bardeen-Cooper-Schrieffer superfluid and Bose-Einstein condensate crossover, in qualitative agreement with a mean-field theory. The atomic DW susceptibility varies over an order of magnitude upon tuning the strength and the sign of the long-range interactions below the self-ordering threshold, demonstrating independent and simultaneous control over the contact and long-range interactions. Therefore, our experimental setup provides a fully tunable and microscopically controllable platform for the experimental study of the interplay of superfluidity and DW order.

SELECTION OF CITATIONS
SEARCH DETAIL