Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Antimicrob Chemother ; 79(1): 172-178, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37995258

ABSTRACT

OBJECTIVES: Antiviral interventions are required to complement vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data to support candidate plausibility are required. This work sought to further investigate the putative antiviral activity of probenecid against SARS-CoV-2. METHODS: Vero E6 cells were preincubated with probenecid, or control media for 2 h before infection (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020). Probenecid or control media was reapplied, plates reincubated and cytopathic activity quantified by spectrophotometry after 48 h. In vitro human airway epithelial cell (HAEC) assays were performed for probenecid against SARS-CoV-2-VoC-B.1.1.7 (hCoV-19/Belgium/rega-12211513/2020; EPI_ISL_791333, 2020-12-21) using an optimized cell model for antiviral testing. Syrian golden hamsters were intranasally inoculated (SARS-CoV-2 Delta B.1.617.2) 24 h prior to treatment with probenecid or vehicle for four twice-daily doses. RESULTS: No observable antiviral activity for probenecid was evident in Vero E6 or HAEC assays. No reduction in total or subgenomic RNA was observed in terminal lung samples (P > 0.05) from hamsters. Body weight of uninfected hamsters remained stable whereas both probenecid- and vehicle-treated infected hamsters lost body weight (P > 0.5). CONCLUSIONS: These data do not support probenecid as a SARS-CoV-2 antiviral drug.


Subject(s)
Lung , Probenecid , Cricetinae , Animals , Humans , Mesocricetus , Probenecid/pharmacology , Body Weight , Antiviral Agents/pharmacology
2.
J Biol Chem ; 295(22): 7595-7607, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32303637

ABSTRACT

The cytochrome P450 monooxygenase P450 BM3 (BM3) is a biotechnologically important and versatile enzyme capable of producing important compounds such as the medical drugs pravastatin and artemether, and the steroid hormone testosterone. BM3 is a natural fusion enzyme comprising two major domains: a cytochrome P450 (heme-binding) catalytic domain and a NADPH-cytochrome P450 reductase (CPR) domain containing FAD and FMN cofactors in distinct domains of the CPR. A crystal structure of full-length BM3 enzyme is not available in its monomeric or catalytically active dimeric state. In this study, we provide detailed insights into the protein-protein interactions that occur between domains in the BM3 enzyme and characterize molecular interactions within the BM3 dimer by using several hybrid mass spectrometry (MS) techniques, namely native ion mobility MS (IM-MS), collision-induced unfolding (CIU), and hydrogen-deuterium exchange MS (HDX-MS). These methods enable us to probe the structure, stoichiometry, and domain interactions in the ∼240 kDa BM3 dimeric complex. We obtained high-sequence coverage (88-99%) in the HDX-MS experiments for full-length BM3 and its component domains in both the ligand-free and ligand-bound states. We identified important protein interaction sites, in addition to sites corresponding to heme-CPR domain interactions at the dimeric interface. These findings bring us closer to understanding the structure and catalytic mechanism of P450 BM3.


Subject(s)
Bacillus megaterium/enzymology , Bacterial Proteins/chemistry , Cytochrome P-450 Enzyme System/chemistry , NADPH-Ferrihemoprotein Reductase/chemistry , Protein Multimerization , Crystallography, X-Ray , Deuterium Exchange Measurement , Mass Spectrometry , Protein Domains , Protein Structure, Quaternary
3.
Int J Mol Sci ; 22(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34768811

ABSTRACT

CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3's high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production.


Subject(s)
Bacillus megaterium/enzymology , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Inactivation, Metabolic
4.
Nat Commun ; 15(1): 2740, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548733

ABSTRACT

Photoreceptor proteins utilise chromophores to sense light and trigger a biological response. The discovery that adenosylcobalamin (or coenzyme B12) can act as a light-sensing chromophore heralded a new field of B12-photobiology. Although microbial genome analysis indicates that photoactive B12-binding domains form part of more complex protein architectures, regulating a range of molecular-cellular functions in response to light, experimental evidence is lacking. Here we identify and characterise a sub-family of multi-centre photoreceptors, termed photocobilins, that use B12 and biliverdin (BV) to sense light across the visible spectrum. Crystal structures reveal close juxtaposition of the B12 and BV chromophores, an arrangement that facilitates optical coupling. Light-triggered conversion of the B12 affects quaternary structure, in turn leading to light-activation of associated enzyme domains. The apparent widespread nature of photocobilins implies involvement in light regulation of a wider array of biochemical processes, and thus expands the scope for B12 photobiology. Their characterisation provides inspiration for the design of broad-spectrum optogenetic tools and next generation bio-photocatalysts.


Subject(s)
Bile Pigments , Photoreceptors, Microbial , Photochemistry , Biliverdine , Bacterial Proteins/metabolism , Photoreceptors, Microbial/chemistry , Light
5.
Nat Commun ; 14(1): 5082, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604813

ABSTRACT

CarH is a coenzyme B12-dependent photoreceptor involved in regulating carotenoid biosynthesis. How light-triggered cleavage of the B12 Co-C bond culminates in CarH tetramer dissociation to initiate transcription remains unclear. Here, a series of crystal structures of the CarH B12-binding domain after illumination suggest formation of unforeseen intermediate states prior to tetramer dissociation. Unexpectedly, in the absence of oxygen, Co-C bond cleavage is followed by reorientation of the corrin ring and a switch from a lower to upper histidine-Co ligation, corresponding to a pentacoordinate state. Under aerobic conditions, rapid flash-cooling of crystals prior to deterioration upon illumination confirm a similar B12-ligand switch occurs. Removal of the upper His-ligating residue prevents monomer formation upon illumination. Combined with detailed solution spectroscopy and computational studies, these data demonstrate the CarH photoresponse integrates B12 photo- and redox-chemistry to drive large-scale conformational changes through stepwise Co-ligation changes.


Subject(s)
Cold Temperature , Histidine , Ligands , Oxidation-Reduction , Lighting
6.
ACS Infect Dis ; 9(2): 221-238, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36606559

ABSTRACT

Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Quinolones , Antitubercular Agents/pharmacology , Cytochromes/antagonists & inhibitors , Electron Transport Complex IV/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Quinolones/pharmacology
7.
Comput Biol Chem ; 99: 107692, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35640480

ABSTRACT

The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Drug Combinations , Humans , Ivermectin , Lactams , Leucine , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitriles , Pandemics , Peptide Hydrolases/metabolism , Proline , Protease Inhibitors/chemistry , Ritonavir , Thermodynamics
8.
Comput Biol Med ; 142: 105245, 2022 03.
Article in English | MEDLINE | ID: mdl-35077937

ABSTRACT

Cellular susceptibility to SARS-CoV-2 infection in the respiratory tract has been associated with the ability of the virus to interact with potential receptors on the host membrane. We have modeled viral dynamics by simulating various cellular systems and artificial conditions, including macromolecular crowding, based on experimental and transcriptomic data to infer parameters associated with viral growth and predict cell susceptibility. We have accomplished this based on the type, number and level of expression of the angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 (TMPRSS2), basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1) or other less studied candidate receptors such as heat shock protein A5 (HSPA5) and angiotensin II receptor type 2 (AGTR2). In parallel, we studied the effect of simulated artificial environments on the accessibility to said proposed receptors. In addition, viral kinetic behavior dependent on the degree of cellular susceptibility was predicted. The latter was observed to be more influenced by the type of proteins and expression level, than by the number of potential proteins associated with the SARS CoV-2 infection. We predict a greater theoretical propensity to susceptibility in cell lines such as NTERA-2, SCLC-21H, HepG2 and Vero6, and a lower theoretical propensity in lines such as CaLu3, RT4, HEK293, A549 and U-251MG. An important relationship was observed between expression levels, protein diffusivity, and thermodynamically favorable interactions between host proteins and the viral spike, suggesting potential sites of early infection other than the lungs. This research is expected to stimulate future quantitative experiments and promote systematic investigation of the effect of crowding presented here.


Subject(s)
COVID-19 , HEK293 Cells , Humans , SARS-CoV-2 , Virus Internalization
9.
bioRxiv ; 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35262084

ABSTRACT

Antiviral interventions are urgently required to support vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data in support of candidate plausibility are required. The speed at which preclinical models have been developed during the pandemic are unprecedented but there is a vital need for standardisation and assessment of the Critical Quality Attributes. This work provides cross-validation for the recent report demonstrating potent antiviral activity of probenecid against SARS-CoV-2 in preclinical models (1). Vero E6 cells were pre-incubated with probenecid, across a 7-point concentration range, or control media for 2 hours before infection with SARS-CoV-2 (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020, Pango B; MOI 0.05). Probenecid or control media was then reapplied and plates incubated for 48 hours. Cells were fixed with 4% v/v paraformaldehyde, stained with crystal violet and cytopathic activity quantified by spectrophotometry at 590 nm. Syrian golden hamsters (n=5 per group) were intranasally inoculated with virus (SARS-CoV-2 Delta variant B.1.617.2; 103 PFU/hamster) for 24 hours prior to treatment. Hamsters were treated with probenecid or vehicle for 4 doses. Hamsters were ethically euthanised before quantification of total and sub-genomic pulmonary viral RNAs. No inhibition of cytopathic activity was observed for probenecid at any concentration in Vero E6 cells. Furthermore, no reduction in either total or subgenomic RNA was observed in terminal lung samples from hamsters on day 3 (P > 0.05). Body weight of uninfected hamsters remained stable throughout the course of the experiment whereas both probenecid- (6 - 9% over 3 days) and vehicle-treated (5 - 10% over 3 days) infected hamsters lost body weight which was comparable in magnitude (P > 0.5). The presented data do not support probenecid as a SARS-CoV-2 antiviral. These data do not support use of probenecid in COVID-19 and further analysis is required prior to initiation of clinical trials to investigate the potential utility of this drug.

10.
Int J Antimicrob Agents ; 59(3): 106542, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35093538

ABSTRACT

A key element for the prevention and management of coronavirus disease 2019 is the development of effective therapeutics. Drug combination strategies offer several advantages over monotherapies. They have the potential to achieve greater efficacy, to increase the therapeutic index of drugs and to reduce the emergence of drug resistance. We assessed the in vitro synergistic interaction between remdesivir and ivermectin, both approved by the US Food and Drug Administration, and demonstrated enhanced antiviral activity against severe acute respiratory syndrome coronavirus-2. Whilst the in vitro synergistic activity reported here does not support the clinical application of this combination treatment strategy due to insufficient exposure of ivermectin in vivo, the data do warrant further investigation. Efforts to define the mechanisms underpinning the observed synergistic action could lead to the development of novel treatment strategies.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Ivermectin/pharmacology , Ivermectin/therapeutic use
11.
Sci Rep ; 9(1): 1577, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733479

ABSTRACT

Flavocytochrome P450 BM3 is a natural fusion protein constructed of cytochrome P450 and NADPH-cytochrome P450 reductase domains. P450 BM3 binds and oxidizes several mid- to long-chain fatty acids, typically hydroxylating these lipids at the ω-1, ω-2 and ω-3 positions. However, protein engineering has led to variants of this enzyme that are able to bind and oxidize diverse compounds, including steroids, terpenes and various human drugs. The wild-type P450 BM3 enzyme binds inefficiently to many azole antifungal drugs. However, we show that the BM3 A82F/F87V double mutant (DM) variant binds substantially tighter to numerous azole drugs than does the wild-type BM3, and that their binding occurs with more extensive heme spectral shifts indicative of complete binding of several azoles to the BM3 DM heme iron. We report here the first crystal structures of P450 BM3 bound to azole antifungal drugs - with the BM3 DM heme domain bound to the imidazole drugs clotrimazole and tioconazole, and to the triazole drugs fluconazole and voriconazole. This is the first report of any protein structure bound to the azole drug tioconazole, as well as the first example of voriconazole heme iron ligation through a pyrimidine nitrogen from its 5-fluoropyrimidine ring.


Subject(s)
Antifungal Agents/chemistry , Azoles/chemistry , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/metabolism , Antifungal Agents/pharmacology , Azoles/pharmacology , Humans , Ligands , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Protein Interaction Domains and Motifs , Spectrum Analysis , Structure-Activity Relationship
12.
Methods Enzymol ; 608: 189-261, 2018.
Article in English | MEDLINE | ID: mdl-30173763

ABSTRACT

The cytochrome P450 monooxygenase enzymes (P450s) catalyze a diverse array of chemical transformations, most originating from the insertion of an oxygen atom into a substrate that binds close to the P450 heme. The oxygen is delivered by a highly reactive heme iron-oxo species (compound I) and, according to the chemical nature of the substrate and its position in the active site, the P450 can catalyze a wide range of reactions including, e.g., hydroxylation, reduction, decarboxylation, sulfoxidation, N- and O-demethylation, epoxidation, deamination, CC bond formation and breakage, nitration, and dehalogenation. In this chapter, we describe the structural, biochemical, and catalytic properties of the P450s, along with spectroscopic and analytical methods used to characterize P450 enzymes and their redox partners. Important uses of P450 enzymes are highlighted, including how various P450s have been exploited for applications in synthetic biology.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Protein Engineering/methods , Animals , Bacteria/chemistry , Bacteria/enzymology , Bacteria/genetics , Bacteria/metabolism , Crystallography, X-Ray/methods , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/isolation & purification , Escherichia coli/chemistry , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Fungi/chemistry , Fungi/enzymology , Fungi/genetics , Fungi/metabolism , Gene Expression , Humans , Models, Molecular , Oxidation-Reduction , Protein Conformation , Synthetic Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL