Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Microb Ecol ; 86(4): 3097-3110, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37878053

ABSTRACT

Drylands comprise one-third of Earth's terrestrial surface area and support over two billion people. Most drylands are projected to experience altered rainfall regimes, including changes in total amounts and fewer but larger rainfall events interspersed by longer periods without rain. This transition will have ecosystem-wide impacts but the long-term effects on microbial communities remain poorly quantified. We assessed belowground effects of altered rainfall regimes (+ 65% and -65% relative to ambient) at six sites in arid and semi-arid Australia over a period of three years (2016-2019) coinciding with a significant natural drought event (2017-2019). Microbial communities differed significantly among semi-arid and arid sites and across years associated with variation in abiotic factors, such as pH and carbon content, along with rainfall. Rainfall treatments induced shifts in microbial community composition only at a subset of the sites (Milparinka and Quilpie). However, differential abundance analyses revealed that several taxa, including Acidobacteria, TM7, Gemmatimonadates and Chytridiomycota, were more abundant in the wettest year (2016) and that their relative abundance decreased in drier years. By contrast, the relative abundance of oligotrophic taxa such as Actinobacteria, Alpha-proteobacteria, Planctomycetes, and Ascomycota and Basidiomycota, increased during the prolonged drought. Interestingly, fungi were shown to be more sensitive to the prolonged drought and to rainfall treatment than bacteria with Basidiomycota mostly dominant in the reduced rainfall treatment. Moreover, correlation network analyses showed more positive associations among stress-tolerant dominant taxa following the drought (i.e., 2019 compared with 2016). Our result indicates that such stress-tolerant taxa play an important role in how whole communities respond to changes in aridity. Such knowledge provides a better understanding of microbial responses to predicted increases in rainfall variability and the impact on the functioning of semi-arid and arid ecosystems.


Subject(s)
Chytridiomycota , Microbiota , Humans , Ecosystem , Droughts , Soil Microbiology , Australia , Soil/chemistry , Bacteria/genetics
2.
Molecules ; 28(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513272

ABSTRACT

This study investigated the effects of a modified rice bran arabinoxylan compound (RBAC) as a dietary supplement on the gut microbiota of healthy adults. Ten volunteers supplemented their diet with 1 g of RBAC for six weeks and 3 g of RBAC for another six weeks, with a three-week washout period. Faecal samples were collected every 3 weeks over 21 weeks. Microbiota from faecal samples were profiled using 16S rRNA sequencing. Assessment of alpha and beta microbiota diversity was performed using the QIIME2 platform. The results revealed that alpha and beta diversity were not associated with the experimental phase, interventional period, RBAC dosage, or time. However, the statistical significance of the participant was detected in alpha (p < 0.002) and beta (weighted unifrac, p = 0.001) diversity. Explanatory factors, including diet and lifestyle, were significantly associated with alpha (p < 0.05) and beta (p < 0.01) diversity. The individual beta diversity of six participants significantly changed (p < 0.05) during the interventional period. Seven participants showed statistically significant taxonomic changes (ANCOM W ≥ 5). These results classified four participants as responders to RBAC supplementation, with a further two participants as likely responders. In conclusion, the gut microbiome is highly individualised and modulated by RBAC as a dietary supplement, dependent on lifestyle and dietary intake.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Oryza , Adult , Humans , Oryza/genetics , RNA, Ribosomal, 16S/genetics , Dietary Supplements , Feces
3.
New Phytol ; 220(3): 824-835, 2018 11.
Article in English | MEDLINE | ID: mdl-29607501

ABSTRACT

Recent research indicates that increased aridity linked to climate change will reduce the diversity of soil microbial communities and shift their community composition in drylands, Earth's largest biome. However, we lack both a theoretical framework and solid empirical evidence of how important biotic components from drylands, such as biocrust-forming mosses, will regulate the responses of microbial communities to expected increases in aridity with climate change. Here we report results from a cross-continental (North America, Europe and Australia) survey of 39 locations from arid to humid ecosystems, where we evaluated how biocrust-forming mosses regulate the relationship between aridity and the community composition and diversity of soil bacteria and fungi in dryland ecosystems. Increasing aridity was negatively related to the richness of fungi, and either positively or negatively related to the relative abundance of selected microbial phyla, when biocrust-forming mosses were absent. Conversely, we found an overall lack of relationship between aridity and the relative abundance and richness of microbial communities under biocrust-forming mosses. Our results suggest that biocrust-forming mosses mitigate the impact of aridity on the community composition of globally distributed microbial taxa, and the diversity of fungi. They emphasize the importance of maintaining biocrusts as a sanctuary for soil microbes in drylands.


Subject(s)
Bryophyta/physiology , Desert Climate , Ecosystem , Soil Microbiology , Bacteria/metabolism , Fungi/physiology , Linear Models , Soil
4.
Proc Natl Acad Sci U S A ; 112(51): 15684-9, 2015 12 22.
Article in English | MEDLINE | ID: mdl-26647180

ABSTRACT

Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands.


Subject(s)
Climate Change , Ecosystem , Soil Microbiology , Hydrogen-Ion Concentration
5.
Environ Microbiol ; 19(8): 3070-3086, 2017 08.
Article in English | MEDLINE | ID: mdl-28447378

ABSTRACT

Soil carbon (C) stabilisation is known to depend in part on its distribution in structural aggregates, and upon soil microbial activity within the aggregates. However, the mechanisms and relative contributions of different microbial groups to C turnover in different aggregates under various management practices remain unclear. The aim of this study was to determine the role of soil aggregation and their associated microbial communities in driving the responses of soil organic matter (SOM) to multiple management practices. Our results demonstrate that higher amounts of C inputs coupled with greater soil aggregation in residue retention management practices has positive effects on soil C content. Our results provide evidence that different aggregate size classes support distinct microbial habitats which supports the colonisation of different microbial communities. Most importantly our results indicate that the effects of management practices on soil C is modulated by soil aggregate sizes and their associated microbial community and are more pronounced in macro-aggregate compared with micro-aggregate sizes. Based on our findings we recommend that differential response of management practices and microbial control on the C turnover in macro-aggregates and micro-aggregate should be explicitly considered when accounting for management impacts on soil C turnover.


Subject(s)
Bacteria/metabolism , Carbon/analysis , Soil Microbiology , Soil/chemistry , Agriculture , Bacteria/genetics , Bacteria/isolation & purification , Carbon/metabolism , Ecosystem
6.
Environ Microbiol ; 19(8): 3175-3185, 2017 08.
Article in English | MEDLINE | ID: mdl-28557350

ABSTRACT

Global change models indicate that rainfall patterns are likely to shift towards more extreme events concurrent with increasing atmospheric carbon dioxide concentration ([CO2 ]). Both changes in [CO2 ] and rainfall regime are known to impact above- and belowground communities, but the interactive effects of these global change drivers have not been well explored, particularly belowground. In this experimental study, we examined the effects of elevated [CO2 ] (ambient + 240 ppm; [eCO2 ]) and changes in rainfall patterns (seasonal drought) on soil microbial communities associated with forest ecosystems. Our results show that bacterial and archaeal communities are highly resistant to seasonal drought under ambient [CO2 ]. However, substantial taxa specific responses to seasonal drought were observed at [eCO2 ], suggesting that [eCO2 ] compromise the resistance of microbial communities to extreme events. Within the microbial community we were able to identify three types of taxa specific responses to drought: tolerance, resilience and sensitivity that contributed to this pattern. All taxa were tolerant to seasonal drought at [aCO2 ], whereas resilience and sensitivity to seasonal drought were much greater in [eCO2 ]. These results provide strong evidence that [eCO2 ] moderates soil microbial community responses to drought in forests, with potential implications for their long-term persistence and ecosystem functioning.


Subject(s)
Bacteria/isolation & purification , Carbon Dioxide/analysis , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Carbon Dioxide/metabolism , Droughts , Ecosystem , Forests , Rhizosphere , Seasons , Soil/chemistry
7.
Environ Microbiol ; 17(10): 4121-32, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26176189

ABSTRACT

The cyanobacterium Prochloron didemni is primarily found in symbiotic relationships with various marine hosts such as ascidians and sponges. Prochloron remains to be successfully cultivated outside of its host, which reflects a lack of knowledge of its unique ecophysiological requirements. We investigated the microenvironment and diversity of Prochloron inhabiting the upper, exposed surface of didemnid ascidians, providing the first insights into this microhabitat. The pH and O2 concentration in this Prochloron biofilm changes dynamically with irradiance, where photosynthetic activity measurements showed low light adaptation (Ek ∼ 80 ± 7 µmol photons m(-2) s(-1)) but high light tolerance. Surface Prochloron cells exhibited a different fine structure to Prochloron cells from cloacal cavities in other ascidians, the principle difference being a central area of many vacuoles dissected by single thylakoids in the surface Prochloron. Cyanobacterial 16S rDNA pyro-sequencing of the biofilm community on four ascidians resulted in 433 operational taxonomic units (OTUs) where on average -85% (65-99%) of all sequence reads, represented by 136 OTUs, were identified as Prochloron via blast search. All of the major Prochloron-OTUs clustered into independent, highly supported phylotypes separate from sequences reported for internal Prochloron, suggesting a hitherto unexplored genetic variability among Prochloron colonizing the outer surface of didemnids.


Subject(s)
Cellular Microenvironment/physiology , Porifera/microbiology , Prochloron/classification , Symbiosis/genetics , Urochordata/microbiology , Animals , Biofilms , DNA, Ribosomal/genetics , Genetic Variation , Light , Photosynthesis/genetics , Photosynthesis/physiology , Phylogeny , Prochloron/genetics , RNA, Ribosomal, 16S/genetics
8.
Microb Ecol ; 67(3): 540-52, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24477921

ABSTRACT

To explore how microbial community composition and function varies within a coral reef ecosystem, we performed metagenomic sequencing of seawater from four niches across Heron Island Reef, within the Great Barrier Reef. Metagenomes were sequenced from seawater samples associated with (1) the surface of the coral species Acropora palifera, (2) the surface of the coral species Acropora aspera, (3) the sandy substrate within the reef lagoon and (4) open water, outside of the reef crest. Microbial composition and metabolic function differed substantially between the four niches. The taxonomic profile showed a clear shift from an oligotroph-dominated community (e.g. SAR11, Prochlorococcus, Synechococcus) in the open water and sandy substrate niches, to a community characterised by an increased frequency of copiotrophic bacteria (e.g. Vibrio, Pseudoalteromonas, Alteromonas) in the coral seawater niches. The metabolic potential of the four microbial assemblages also displayed significant differences, with the open water and sandy substrate niches dominated by genes associated with core house-keeping processes such as amino acid, carbohydrate and protein metabolism as well as DNA and RNA synthesis and metabolism. In contrast, the coral surface seawater metagenomes had an enhanced frequency of genes associated with dynamic processes including motility and chemotaxis, regulation and cell signalling. These findings demonstrate that the composition and function of microbial communities are highly variable between niches within coral reef ecosystems and that coral reefs host heterogeneous microbial communities that are likely shaped by habitat structure, presence of animal hosts and local biogeochemical conditions.


Subject(s)
Archaea/genetics , Bacteria/genetics , Biodiversity , Coral Reefs , Environment , Metagenome , Seawater/microbiology , Archaea/classification , Archaea/metabolism , Bacteria/classification , Bacteria/metabolism , Molecular Sequence Data , Phylogeny , Queensland , Sequence Analysis, DNA
9.
Environ Microbiol ; 14(1): 240-53, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22004107

ABSTRACT

A metagenomic analysis of two aquifer systems located under a dairy farming region was performed to examine to what extent the composition and function of microbial communities varies between confined and surface-influenced unconfined groundwater ecosystems. A fundamental shift in taxa was seen with an overrepresentation of Rhodospirillales, Rhodocyclales, Chlorobia and Circovirus in the unconfined aquifer, while Deltaproteobacteria and Clostridiales were overrepresented in the confined aquifer. A relative overrepresentation of metabolic processes including antibiotic resistance (ß-lactamase genes), lactose and glucose utilization and DNA replication were observed in the unconfined aquifer, while flagella production, phosphate metabolism and starch uptake pathways were all overrepresented in the confined aquifer. These differences were likely driven by differences in the nutrient status and extent of exposure to contaminants of the two groundwater systems. However, when compared with freshwater, ocean, sediment and animal gut metagenomes, the unconfined and confined aquifers were taxonomically and metabolically more similar to each other than to any other environment. This suggests that intrinsic features of groundwater ecosystems, including low oxygen levels and a lack of sunlight, have provided specific niches for evolution to create unique microbial communities. Obtaining a broader understanding of the structure and function of microbial communities inhabiting different groundwater systems is particularly important given the increased need for managing groundwater reserves of potable water.


Subject(s)
Bacteria/genetics , Ecosystem , Groundwater/microbiology , Metagenome , Bacteria/metabolism , DNA, Bacterial/genetics , Dairying , Environmental Monitoring
10.
Microb Biotechnol ; 15(1): 318-336, 2022 01.
Article in English | MEDLINE | ID: mdl-34689422

ABSTRACT

Understanding the relative importance of soil microbial diversity, plants and nutrient management is crucial to implement an effective bioremediation approach to xenobiotics-contaminated soils. To date, knowledge on the interactive effects of soil microbiome, plant and nutrient supply on influencing biodegradation potential of soils remains limited. In this study, we evaluated the individual and interactive effects of soil initial bacterial diversity, nutrient amendments (organic and inorganic) and plant presence on the biodegradation rate of pyrene, a polycyclic aromatic hydrocarbon. Initial bacterial diversity had a strong positive impact on soil biodegradation potential, with soil harbouring higher bacterial diversity showing ~ 2 times higher degradation rates than soils with lower bacterial diversity. Both organic and inorganic nutrient amendments consistently improved the degradation rate in lower diversity soils and had negative (inorganic) to neutral (organic) effect in higher diversity soils. Interestingly, plant presence/type did not show any significant effect on the degradation rate in most of the treatments. Structural equation modelling demonstrated that initial bacterial diversity had a prominent role in driving pyrene biodegradation rates. We provide novel evidence that suggests that soil initial microbial diversity, and nutrient amendments should be explicitly considered in the design and employment of bioremediation management strategies for restoring natural habitats disturbed by organic pollutants.


Subject(s)
Microbiota , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Nutrients , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Soil Microbiology , Soil Pollutants/analysis , Xenobiotics
11.
Sci Total Environ ; 705: 135806, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31838420

ABSTRACT

Seagrass biomass represents an important source of organic carbon that can contribute to long-term sediment carbon stocks in coastal ecosystems. There is little empirical data on the long-term microbial decomposition of seagrass detritus, despite this process being one of the key drivers of carbon-cycling in coastal ecosystems, that is, it influences the amount and quality of carbon available for sequestration. Here, our goal was to investigate how litter quality (leaf vs. rhizome/root) and the microbial communities involved in organic matter remineralisation shift over a 2-year field decomposition study north of Sydney, Australia using the temperate seagrass Zostera muelleri. The sites varied in bulk sediment characteristics and the sediment-associated microbial communities, but these variables overall had little influence on long-term seagrass decomposition rates or seagrass-associated microbiomes. The results showed a clear succession of bacterial and archaeal communities for both tissues types from r-strategists such as α- and γ-proteobacteria to K-strategies, including δ-proteobacteria, Bacteroidia and Spirochaetes. We used a new mathematical model to capture how decay rates varied over time and found that two decomposition events occurred for some seagrass leaf samples, possibly due to exudate input from living seagrass roots growing into the litter bag. The new model also indicated that conventional single exponential models overestimate long-term decay rates, and we detected for the first time the refractory, or stable, phase of decomposition for rhizome/root biomass. The stable phase began at approximately 20% mass remaining and after 600 days, and the persistence of rhizome/root biomass was attributed to the anoxic conditions and the preservation of refractory organic matter. While we predict that rhizome/root biomass will contribute more to the long-term sediment carbon stocks, the preservation of leaf carbon may be enhanced at locations were sedimentation is high and burial in anoxic conditions is rapid and constant.


Subject(s)
Ecosystem , Zosteraceae , Australia , Biomass , Carbon , Carbon Cycle
12.
Sci Total Environ ; 712: 135994, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31931194

ABSTRACT

We collected over 40 groundwater samples from a per- and polyfluoroalkyl substances (PFAS) impacted legacy fire fighting training area in Canada to develop an in-depth assessment of the relationship between PFAS and in situ microbial communities. Results suggest differential transport of PFAS of differing chain-length and head group. There is also evidence of PFAS degradation, in particular 6:2 FTS degradation. Although PFAS constituents were not major drivers of microbial community structure, the relative abundance of over one hundred individual genera were significantly associated with PFAS chemistry. For example, lineages within the Oxalobacteraceae family had strong negative correlations with PFAS, whilst the Desulfococcus genus has strong positive correlations. Results also suggest a range of genera may have been stimulated at low to mid-range concentrations (e.g., Gordonia and Acidimicrobium), with some genera potentially inhibited at high PFAS concentrations. Any correlations identified need to be further investigated to determine the underlying reasons for observed associations as this is an open field site with the potential for many confounding factors. Positive correlations may ultimately provide important insights related to development of biodegradation technologies for PFAS impacted sites, while negative correlations further improve our understanding of the potential negative effects of PFAS on ecosystem health.


Subject(s)
Groundwater , Microbiota , Canada , Fluorocarbons , Water Pollutants, Chemical
13.
PeerJ ; 7: e6534, 2019.
Article in English | MEDLINE | ID: mdl-30972242

ABSTRACT

BACKGROUND: The diet of the koala (Phascolarctos cinereus) is comprised almost exclusively of foliage from the genus Eucalyptus (family Myrtaceae). Eucalyptus produces a wide variety of potentially toxic plant secondary metabolites which have evolved as chemical defences against herbivory. The koala is classified as an obligate dietary specialist, and although dietary specialisation is rare in mammalian herbivores, it has been found elsewhere to promote a highly-conserved but low-diversity gut microbiome. The gut microbes of dietary specialists have been found sometimes to enhance tolerance of dietary PSMs, facilitating competition-free access to food. Although the koala and its gut microbes have evolved together to utilise a low nutrient, potentially toxic diet, their gut microbiome has not previously been assessed in conjunction with diet quality. Thus, linking the two may provide new insights in to the ability of the koala to extract nutrients and detoxify their potentially toxic diet. METHOD: The 16S rRNA gene was used to characterise the composition and diversity of faecal bacterial communities from a wild koala population (n = 32) comprising individuals that predominately eat either one of two different food species, one the strongly preferred and relatively nutritious species Eucalyptus viminalis, the other comprising the less preferred and less digestible species Eucalyptus obliqua. RESULTS: Alpha diversity indices indicated consistently and significantly lower diversity and richness in koalas eating E. viminalis. Assessment of beta diversity using both weighted and unweighted UniFrac matrices indicated that diet was a strong driver of both microbial community structure, and of microbial presence/absence across the combined koala population and when assessed independently. Further, principal coordinates analysis based on both the weighted and unweighted UniFrac matrices for the combined and separated populations, also revealed a separation linked to diet. During our analysis of the OTU tables we also detected a strong association between microbial community composition and host diet. We found that the phyla Bacteroidetes and Firmicutes were co-dominant in all faecal microbiomes, with Cyanobacteria also co-dominant in some individuals; however, the E. viminalis diet produced communities dominated by the genera Parabacteroides and/or Bacteroides, whereas the E. obliqua-associated diets were dominated by unidentified genera from the family Ruminococcaceae. DISCUSSION: We show that diet differences, even those caused by differential consumption of the foliage of two species from the same plant genus, can profoundly affect the gut microbiome of a specialist folivorous mammal, even amongst individuals in the same population. We identify key microbiota associated with each diet type and predict functions within the microbial community based on 80 previously identified Parabacteroides and Ruminococcaceae genomes.

14.
Sci Total Environ ; 658: 105-115, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30572210

ABSTRACT

Glyphosate (GLP) is one of the most widely-used herbicides globally and its toxicity to humans and the environment is controversial. GLP is biodegradable, but little is known about the importance of site exposure history and other environmental variables on the rate and pathway of biodegradation. Here, GLP was added to microcosms of soils and sediments with different exposure histories and these were incubated with amendments of glucose, ammonium, and phosphate. GLP concentrations were measured with a newly-developed HPLC method capable of tolerating high concentrations of ammonium and amino acids. GLP biodegradation occurred after a lag-time proportional to the level of GLP pre-exposure in anthropogenically-impacted samples (soils and sediments), while no degradation occurred in samples from a pristine sediment after 180 days of incubation. Exposure history did not influence the rate of GLP degradation, after the lag-time was elapsed. Addition of C, N, and P triggered GLP degradation in pristine sediment and shortened the lag-time before degradation in other samples. In all microcosms, GLP was metabolised into aminomethylphosphonic acid (AMPA), which was highly persistent, and thus appears to be a more problematic pollutant than GLP. Bacterial communities changed along the gradients of anthropogenic impacts, but in some cases, taxonomically very-similar communities showed dramatically different activities with GLP. Our findings reveal important interactions between agriculturally-relevant nutrients and herbicides.


Subject(s)
Biodegradation, Environmental , Geologic Sediments/chemistry , Glycine/analogs & derivatives , Herbicides/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Glycine/analysis , Glycine/metabolism , Herbicides/analysis , Kinetics , Models, Chemical , Soil Microbiology , Soil Pollutants/analysis , Glyphosate
15.
PeerJ ; 6: e5648, 2018.
Article in English | MEDLINE | ID: mdl-30280026

ABSTRACT

Eucalyptus is harvested for wood and fiber production in many tropical and sub-tropical habitats globally. Plantation has been controversial because of its influence on the surrounding environment, however, the influence of massive Eucalyptus planting on soil microbial communities is unclear. Here we applied high-throughput sequencing of the 16S rRNA gene to assess the microbial community composition and diversity of planting chronosequences, involving two, five and ten years of Eucalyptus plantation, comparing to that of secondary-forest in South China. We found that significant changes in the composition of soil bacteria occurred when the forests were converted from secondary-forest to Eucalyptus. The bacterial community structure was clearly distinct from control and five year samples after Eucalyptus was grown for 2 and 10 years, highlighting the influence of this plantation on local soil microbial communities. These groupings indicated a cycle of impact (2 and 10 year plantations) and low impact (5-year plantations) in this chronosequence of Eucalyptus plantation. Community patterns were underpinned by shifts in soil properties such as pH and phosphorus concentration. Concurrently, key soil taxonomic groups such as Actinobacteria showed abundance shifts, increasing in impacted plantations and decreasing in low impacted samples. Shifts in taxonomy were reflected in a shift in metabolic potential, including pathways for nutrient cycles such as carbon fixation, which changed in abundance over time following Eucalyptus plantation. Combined these results confirm that Eucalyptus plantation can change the community structure and diversity of soil microorganisms with strong implications for land-management and maintaining the health of these ecosystems.

16.
PLoS One ; 13(12): e0209857, 2018.
Article in English | MEDLINE | ID: mdl-30586428

ABSTRACT

Sydney Harbour is subjected to persistent stress associated with anthropogenic activity and global climate change, but is particularly subjected to pulse stress events associated with stormwater input during episodic periods of high rainfall. Photosynthetic microbes underpin metazoan diversity within estuarine systems and are therefore important bioindicators of ecosystem health; yet how stormwater input affects their occurrence and distribution in Sydney Harbour remains poorly understood. We utilised molecular tools (16S/18S rRNA and petB genes) to examine how the phytoplankton community structure (both prokaryotes and eukaryotes) within Sydney Harbour varies between high and low rainfall periods. The relative proportion of phytoplankton sequences was more abundant during the high rainfall period, comprising mainly of diatoms, an important functional group supporting increased productivity within estuarine systems, together with cyanobacteria. Increased spatial variability in the phytoplankton community composition was observed, potentially driven by the steepened physico-chemical gradients associated with stormwater inflow. Conversely, during a low rainfall period, the proportion of planktonic photosynthetic microbes was significantly lower and the persistent phytoplankton were predominantly represented by chlorophyte and dinoflagellate sequences, with lower overall diversity. Differences in phytoplankton composition between the high and low rainfall periods were correlated with temperature, salinity, total nitrogen and silicate. These results suggest that increased frequency of high-rainfall events may change the composition, productivity and health of the estuary. Our study begins to populate the knowledge gap in the phytoplankton community structure and substantial changes associated with transient environmental perturbations, an essential step towards unravelling the dynamics of primary production in a highly urbanised estuarine ecosystem in response to climate change and other anthropogenic stressors.


Subject(s)
Estuaries , Phytoplankton/genetics , Australia , Cyanobacteria , Diatoms , Environmental Monitoring/methods , Phytoplankton/classification , Rivers/microbiology
17.
Front Microbiol ; 9: 147, 2018.
Article in English | MEDLINE | ID: mdl-29515526

ABSTRACT

Chemical contamination of natural and agricultural habitats is an increasing global problem and a major threat to sustainability and human health. Organophosphorus (OP) compounds are one major class of contaminant and can undergo microbial degradation, however, no studies have applied system-wide ecogenomic tools to investigate OP degradation or use metagenomics to understand the underlying mechanisms of biodegradation in situ and predict degradation potential. Thus, there is a lack of knowledge regarding the functional genes and genomic potential underpinning degradation and community responses to contamination. Here we address this knowledge gap by performing shotgun sequencing of community DNA from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Our results showed two distinct groups of soils defined by differing functional and taxonomic profiles. Degradation assays suggested that these groups corresponded to the organophosphorus degradation potential of soils, with the fastest degrading community being defined by increases in transport and nutrient cycling pathways and enzymes potentially involved in phosphorus metabolism. This was against a backdrop of taxonomic community shifts potentially related to contamination adaptation and reflecting the legacy of exposure. Overall our results highlight the value of using holistic system-wide metagenomic approaches as a tool to predict microbial degradation in the context of the ecology of contaminated habitats.

18.
PeerJ ; 5: e3827, 2017.
Article in English | MEDLINE | ID: mdl-29038749

ABSTRACT

Understanding how the environment selects a given taxon and the diversity patterns that emerge as a result of environmental filtering can dramatically improve our ability to analyse any environment in depth as well as advancing our knowledge on how the response of different taxa can impact each other and ecosystem functions. Most of the work investigating microbial biogeography has been site-specific, and logical environmental factors, rather than geographical location, may be more influential on microbial diversity. SEQenv, a novel pipeline aiming to provide environmental annotations of sequences emerged to provide a consistent description of the environmental niches using the ENVO ontology. While the pipeline provides a list of environmental terms on the basis of sample datasets and, therefore, the annotations obtained are at the dataset level, it lacks a taxa centric approach to environmental annotation. The work here describes an extension developed to enhance the SEQenv pipeline, which provided the means to directly generate environmental annotations for taxa under different contexts. 16S rDNA amplicon datasets belonging to distinct biomes were selected to illustrate the applicability of the extended SEQenv pipeline. A literature survey of the results demonstrates the immense importance of sequence level environmental annotations by illustrating the distribution of both taxa across environments as well as the various environmental sources of a specific taxon. Significantly enhancing the SEQenv pipeline in the process, this information would be valuable to any biologist seeking to understand the various taxa present in the habitat and the environment they originated from, enabling a more thorough analysis of which lineages are abundant in certain habitats and the recovery of patterns in taxon distribution across different habitats and environmental gradients.

19.
FEMS Microbiol Ecol ; 93(6)2017 06 01.
Article in English | MEDLINE | ID: mdl-28334391

ABSTRACT

Seagrass ecosystems are significant carbon sinks, and their resident microbial communities ultimately determine the quantity and quality of carbon sequestered. However, environmental perturbations have been predicted to affect microbial-driven seagrass decomposition and subsequent carbon sequestration. Utilizing techniques including 16S-rDNA sequencing, solid-state NMR and microsensor profiling, we tested the hypothesis that elevated seawater temperatures and eutrophication enhance the microbial decomposition of seagrass leaf detritus and rhizome/root tissues. Nutrient additions had a negligible effect on seagrass decomposition, indicating an absence of nutrient limitation. Elevated temperatures caused a 19% higher biomass loss for aerobically decaying leaf detritus, coinciding with changes in bacterial community structure and enhanced lignocellulose degradation. Although, community shifts and lignocellulose degradation were also observed for rhizome/root decomposition, anaerobic decay was unaffected by temperature. These observations suggest that oxygen availability constrains the stimulatory effects of temperature increases on bacterial carbon remineralization, possibly through differential temperature effects on bacterial functional groups, including putative aerobic heterotrophs (e.g. Erythrobacteraceae, Hyphomicrobiaceae) and sulfate reducers (e.g. Desulfobacteraceae). Consequently, under elevated seawater temperatures, carbon accumulation rates may diminish due to higher remineralization rates at the sediment surface. Nonetheless, the anoxic conditions ubiquitous to seagrass sediments can provide a degree of carbon protection under warming seawater temperatures.


Subject(s)
Alismatales/metabolism , Anaerobiosis/physiology , Geologic Sediments/microbiology , Proteobacteria/metabolism , Seawater/microbiology , Alismatales/microbiology , Biomass , Carbon/metabolism , Carbon Sequestration , Ecosystem , Eutrophication/physiology , Hot Temperature , Oxygen/metabolism , RNA, Ribosomal, 16S/genetics
20.
Nat Commun ; 7: 10541, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26817514

ABSTRACT

Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Soil Microbiology , Bacteria/classification , Climate , Ecosystem , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL