Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 546
Filter
Add more filters

Publication year range
1.
CA Cancer J Clin ; 74(1): 12-49, 2024.
Article in English | MEDLINE | ID: mdl-38230766

ABSTRACT

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries (through 2020) and mortality data collected by the National Center for Health Statistics (through 2021). In 2024, 2,001,140 new cancer cases and 611,720 cancer deaths are projected to occur in the United States. Cancer mortality continued to decline through 2021, averting over 4 million deaths since 1991 because of reductions in smoking, earlier detection for some cancers, and improved treatment options in both the adjuvant and metastatic settings. However, these gains are threatened by increasing incidence for 6 of the top 10 cancers. Incidence rates increased during 2015-2019 by 0.6%-1% annually for breast, pancreas, and uterine corpus cancers and by 2%-3% annually for prostate, liver (female), kidney, and human papillomavirus-associated oral cancers and for melanoma. Incidence rates also increased by 1%-2% annually for cervical (ages 30-44 years) and colorectal cancers (ages <55 years) in young adults. Colorectal cancer was the fourth-leading cause of cancer death in both men and women younger than 50 years in the late-1990s but is now first in men and second in women. Progress is also hampered by wide persistent cancer disparities; compared to White people, mortality rates are two-fold higher for prostate, stomach and uterine corpus cancers in Black people and for liver, stomach, and kidney cancers in Native American people. Continued national progress will require increased investment in cancer prevention and access to equitable treatment, especially among American Indian and Alaska Native and Black individuals.


Subject(s)
Melanoma , Neoplasms , Male , Young Adult , Humans , Female , United States/epidemiology , Neoplasms/epidemiology , Neoplasms/therapy , Registries , Incidence , Smoking , White
2.
CA Cancer J Clin ; 74(3): 229-263, 2024.
Article in English | MEDLINE | ID: mdl-38572751

ABSTRACT

This article presents global cancer statistics by world region for the year 2022 based on updated estimates from the International Agency for Research on Cancer (IARC). There were close to 20 million new cases of cancer in the year 2022 (including nonmelanoma skin cancers [NMSCs]) alongside 9.7 million deaths from cancer (including NMSC). The estimates suggest that approximately one in five men or women develop cancer in a lifetime, whereas around one in nine men and one in 12 women die from it. Lung cancer was the most frequently diagnosed cancer in 2022, responsible for almost 2.5 million new cases, or one in eight cancers worldwide (12.4% of all cancers globally), followed by cancers of the female breast (11.6%), colorectum (9.6%), prostate (7.3%), and stomach (4.9%). Lung cancer was also the leading cause of cancer death, with an estimated 1.8 million deaths (18.7%), followed by colorectal (9.3%), liver (7.8%), female breast (6.9%), and stomach (6.8%) cancers. Breast cancer and lung cancer were the most frequent cancers in women and men, respectively (both cases and deaths). Incidence rates (including NMSC) varied from four-fold to five-fold across world regions, from over 500 in Australia/New Zealand (507.9 per 100,000) to under 100 in Western Africa (97.1 per 100,000) among men, and from over 400 in Australia/New Zealand (410.5 per 100,000) to close to 100 in South-Central Asia (103.3 per 100,000) among women. The authors examine the geographic variability across 20 world regions for the 10 leading cancer types, discussing recent trends, the underlying determinants, and the prospects for global cancer prevention and control. With demographics-based predictions indicating that the number of new cases of cancer will reach 35 million by 2050, investments in prevention, including the targeting of key risk factors for cancer (including smoking, overweight and obesity, and infection), could avert millions of future cancer diagnoses and save many lives worldwide, bringing huge economic as well as societal dividends to countries over the forthcoming decades.


Subject(s)
Global Health , Neoplasms , Humans , Neoplasms/epidemiology , Neoplasms/mortality , Male , Female , Incidence , Global Health/statistics & numerical data , Adult , Middle Aged , Aged , Child , Adolescent , Child, Preschool , Infant , Young Adult , Sex Distribution , Infant, Newborn , Aged, 80 and over
3.
CA Cancer J Clin ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990124

ABSTRACT

In 2018, the authors reported estimates of the number and proportion of cancers attributable to potentially modifiable risk factors in 2014 in the United States. These data are useful for advocating for and informing cancer prevention and control. Herein, based on up-to-date relative risk and cancer occurrence data, the authors estimated the proportion and number of invasive cancer cases (excluding nonmelanoma skin cancers) and deaths, overall and for 30 cancer types among adults who were aged 30 years and older in 2019 in the United States, that were attributable to potentially modifiable risk factors. These included cigarette smoking; second-hand smoke; excess body weight; alcohol consumption; consumption of red and processed meat; low consumption of fruits and vegetables, dietary fiber, and dietary calcium; physical inactivity; ultraviolet radiation; and seven carcinogenic infections. Numbers of cancer cases and deaths were obtained from data sources with complete national coverage, risk factor prevalence estimates from nationally representative surveys, and associated relative risks of cancer from published large-scale pooled or meta-analyses. In 2019, an estimated 40.0% (713,340 of 1,781,649) of all incident cancers (excluding nonmelanoma skin cancers) and 44.0% (262,120 of 595,737) of all cancer deaths in adults aged 30 years and older in the United States were attributable to the evaluated risk factors. Cigarette smoking was the leading risk factor contributing to cancer cases and deaths overall (19.3% and 28.5%, respectively), followed by excess body weight (7.6% and 7.3%, respectively), and alcohol consumption (5.4% and 4.1%, respectively). For 19 of 30 evaluated cancer types, more than one half of the cancer cases and deaths were attributable to the potentially modifiable risk factors considered in this study. Lung cancer had the highest number of cancer cases (201,660) and deaths (122,740) attributable to evaluated risk factors, followed by female breast cancer (83,840 cases), skin melanoma (82,710), and colorectal cancer (78,440) for attributable cases and by colorectal (25,800 deaths), liver (14,720), and esophageal (13,600) cancer for attributable deaths. Large numbers of cancer cases and deaths in the United States are attributable to potentially modifiable risk factors, underscoring the potential to substantially reduce the cancer burden through broad and equitable implementation of preventive initiatives.

4.
CA Cancer J Clin ; 74(2): 136-166, 2024.
Article in English | MEDLINE | ID: mdl-37962495

ABSTRACT

In 2021, the American Cancer Society published its first biennial report on the status of cancer disparities in the United States. In this second report, the authors provide updated data on racial, ethnic, socioeconomic (educational attainment as a marker), and geographic (metropolitan status) disparities in cancer occurrence and outcomes and contributing factors to these disparities in the country. The authors also review programs that have reduced cancer disparities and provide policy recommendations to further mitigate these inequalities. There are substantial variations in risk factors, stage at diagnosis, receipt of care, survival, and mortality for many cancers by race/ethnicity, educational attainment, and metropolitan status. During 2016 through 2020, Black and American Indian/Alaska Native people continued to bear a disproportionately higher burden of cancer deaths, both overall and from major cancers. By educational attainment, overall cancer mortality rates were about 1.6-2.8 times higher in individuals with ≤12 years of education than in those with ≥16 years of education among Black and White men and women. These disparities by educational attainment within each race were considerably larger than the Black-White disparities in overall cancer mortality within each educational attainment, ranging from 1.03 to 1.5 times higher among Black people, suggesting a major role for socioeconomic status disparities in racial disparities in cancer mortality given the disproportionally larger representation of Black people in lower socioeconomic status groups. Of note, the largest Black-White disparities in overall cancer mortality were among those who had ≥16 years of education. By area of residence, mortality from all cancer and from leading causes of cancer death were substantially higher in nonmetropolitan areas than in large metropolitan areas. For colorectal cancer, for example, mortality rates in nonmetropolitan areas versus large metropolitan areas were 23% higher among males and 21% higher among females. By age group, the racial and geographic disparities in cancer mortality were greater among individuals younger than 65 years than among those aged 65 years and older. Many of the observed racial, socioeconomic, and geographic disparities in cancer mortality align with disparities in exposure to risk factors and access to cancer prevention, early detection, and treatment, which are largely rooted in fundamental inequities in social determinants of health. Equitable policies at all levels of government, broad interdisciplinary engagement to address these inequities, and equitable implementation of evidence-based interventions, such as increasing health insurance coverage, are needed to reduce cancer disparities.


Subject(s)
Ethnicity , Neoplasms , Male , Humans , Female , United States/epidemiology , American Cancer Society , Neoplasms/epidemiology , Neoplasms/therapy , Delivery of Health Care , Black People , Health Status Disparities , Healthcare Disparities
5.
CA Cancer J Clin ; 73(3): 233-254, 2023.
Article in English | MEDLINE | ID: mdl-36856579

ABSTRACT

Colorectal cancer (CRC) is the second most common cause of cancer death in the United States. Every 3 years, the American Cancer Society provides an update of CRC statistics based on incidence from population-based cancer registries and mortality from the National Center for Health Statistics. In 2023, approximately 153,020 individuals will be diagnosed with CRC and 52,550 will die from the disease, including 19,550 cases and 3750 deaths in individuals younger than 50 years. The decline in CRC incidence slowed from 3%-4% annually during the 2000s to 1% annually during 2011-2019, driven partly by an increase in individuals younger than 55 years of 1%-2% annually since the mid-1990s. Consequently, the proportion of cases among those younger than 55 years increased from 11% in 1995 to 20% in 2019. Incidence since circa 2010 increased in those younger than 65 years for regional-stage disease by about 2%-3% annually and for distant-stage disease by 0.5%-3% annually, reversing the overall shift to earlier stage diagnosis that occurred during 1995 through 2005. For example, 60% of all new cases were advanced in 2019 versus 52% in the mid-2000s and 57% in 1995, before widespread screening. There is also a shift to left-sided tumors, with the proportion of rectal cancer increasing from 27% in 1995 to 31% in 2019. CRC mortality declined by 2% annually from 2011-2020 overall but increased by 0.5%-3% annually in individuals younger than 50 years and in Native Americans younger than 65 years. In summary, despite continued overall declines, CRC is rapidly shifting to diagnosis at a younger age, at a more advanced stage, and in the left colon/rectum. Progress against CRC could be accelerated by uncovering the etiology of rising incidence in generations born since 1950 and increasing access to high-quality screening and treatment among all populations, especially Native Americans.


Subject(s)
Colorectal Neoplasms , Rectal Neoplasms , Humans , United States/epidemiology , Colorectal Neoplasms/diagnosis , Incidence , American Cancer Society
6.
CA Cancer J Clin ; 73(1): 17-48, 2023 01.
Article in English | MEDLINE | ID: mdl-36633525

ABSTRACT

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries and mortality data collected by the National Center for Health Statistics. In 2023, 1,958,310 new cancer cases and 609,820 cancer deaths are projected to occur in the United States. Cancer incidence increased for prostate cancer by 3% annually from 2014 through 2019 after two decades of decline, translating to an additional 99,000 new cases; otherwise, however, incidence trends were more favorable in men compared to women. For example, lung cancer in women decreased at one half the pace of men (1.1% vs. 2.6% annually) from 2015 through 2019, and breast and uterine corpus cancers continued to increase, as did liver cancer and melanoma, both of which stabilized in men aged 50 years and older and declined in younger men. However, a 65% drop in cervical cancer incidence during 2012 through 2019 among women in their early 20s, the first cohort to receive the human papillomavirus vaccine, foreshadows steep reductions in the burden of human papillomavirus-associated cancers, the majority of which occur in women. Despite the pandemic, and in contrast with other leading causes of death, the cancer death rate continued to decline from 2019 to 2020 (by 1.5%), contributing to a 33% overall reduction since 1991 and an estimated 3.8 million deaths averted. This progress increasingly reflects advances in treatment, which are particularly evident in the rapid declines in mortality (approximately 2% annually during 2016 through 2020) for leukemia, melanoma, and kidney cancer, despite stable/increasing incidence, and accelerated declines for lung cancer. In summary, although cancer mortality rates continue to decline, future progress may be attenuated by rising incidence for breast, prostate, and uterine corpus cancers, which also happen to have the largest racial disparities in mortality.


Subject(s)
Lung Neoplasms , Melanoma , Multiple Endocrine Neoplasia Type 1 , Neoplasms , Male , Humans , Female , United States/epidemiology , Middle Aged , Aged , Neoplasms/epidemiology , Registries , Incidence , Racial Groups , Lung Neoplasms/epidemiology
7.
CA Cancer J Clin ; 73(2): 120-146, 2023 03.
Article in English | MEDLINE | ID: mdl-36346402

ABSTRACT

American Indian and Alaska Native (AIAN) individuals are diverse culturally and geographically but share a high prevalence of chronic illness, largely because of obstacles to high-quality health care. The authors comprehensively examined cancer incidence and mortality among non-Hispanic AIAN individuals, compared with non-Hispanic White individuals for context, using population-based data from the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries. Overall cancer rates among AIAN individuals were 2% higher than among White individuals for incidence (2014 through 2018, confined to Purchased/Referred Care Delivery Area counties to reduce racial misclassification) but 18% higher for mortality (2015 through 2019). However, disparities varied widely by cancer type and geographic region. For example, breast and prostate cancer mortality rates are 8% and 31% higher, respectively, in AIAN individuals than in White individuals despite lower incidence and the availability of early detection tests for these cancers. The burden among AIAN individuals is highest for infection-related cancers (liver, stomach, and cervix), for kidney cancer, and for colorectal cancer among indigenous Alaskans (91.3 vs. 35.5 cases per 100,000 for White Alaskans), who have the highest rates in the world. Steep increases for early onset colorectal cancer, from 18.8 cases per 100,000 Native Alaskans aged 20-49 years during 1998 through 2002 to 34.8 cases per 100,000 during 2014 through 2018, exacerbated this disparity. Death rates for infection-related cancers (liver, stomach, and cervix), as well as kidney cancer, were approximately two-fold higher among AIAN individuals compared with White individuals. These findings highlight the need for more effective strategies to reduce the prevalence of chronic oncogenic infections and improve access to high-quality cancer screening and treatment for AIAN individuals. Mitigating the disparate burden will require expanded financial support of tribal health care as well as increased collaboration and engagement with this marginalized population.


Subject(s)
Colorectal Neoplasms , Indians, North American , Kidney Neoplasms , Male , Female , Humans , American Indian or Alaska Native
8.
CA Cancer J Clin ; 72(1): 7-33, 2022 01.
Article in English | MEDLINE | ID: mdl-35020204

ABSTRACT

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes. Incidence data (through 2018) were collected by the Surveillance, Epidemiology, and End Results program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2019) were collected by the National Center for Health Statistics. In 2022, 1,918,030 new cancer cases and 609,360 cancer deaths are projected to occur in the United States, including approximately 350 deaths per day from lung cancer, the leading cause of cancer death. Incidence during 2014 through 2018 continued a slow increase for female breast cancer (by 0.5% annually) and remained stable for prostate cancer, despite a 4% to 6% annual increase for advanced disease since 2011. Consequently, the proportion of prostate cancer diagnosed at a distant stage increased from 3.9% to 8.2% over the past decade. In contrast, lung cancer incidence continued to decline steeply for advanced disease while rates for localized-stage increased suddenly by 4.5% annually, contributing to gains both in the proportion of localized-stage diagnoses (from 17% in 2004 to 28% in 2018) and 3-year relative survival (from 21% to 31%). Mortality patterns reflect incidence trends, with declines accelerating for lung cancer, slowing for breast cancer, and stabilizing for prostate cancer. In summary, progress has stagnated for breast and prostate cancers but strengthened for lung cancer, coinciding with changes in medical practice related to cancer screening and/or treatment. More targeted cancer control interventions and investment in improved early detection and treatment would facilitate reductions in cancer mortality.


Subject(s)
Breast Neoplasms/epidemiology , Early Detection of Cancer/statistics & numerical data , Lung Neoplasms/epidemiology , Prostatic Neoplasms/epidemiology , American Cancer Society , Breast Neoplasms/diagnosis , Early Detection of Cancer/trends , Female , Humans , Incidence , Lung Neoplasms/diagnosis , Male , Neoplasm Staging , Prostatic Neoplasms/diagnosis , SEER Program/statistics & numerical data , Survival Rate , United States/epidemiology
9.
CA Cancer J Clin ; 72(5): 409-436, 2022 09.
Article in English | MEDLINE | ID: mdl-35736631

ABSTRACT

The number of cancer survivors continues to increase in the United States due to the growth and aging of the population as well as advances in early detection and treatment. To assist the public health community in better serving these individuals, the American Cancer Society and the National Cancer Institute collaborate triennially to estimate cancer prevalence in the United States using incidence and survival data from the Surveillance, Epidemiology, and End Results cancer registries, vital statistics from the Centers for Disease Control and Prevention's National Center for Health Statistics, and population projections from the US Census Bureau. Current treatment patterns based on information in the National Cancer Database are presented for the most prevalent cancer types by race, and cancer-related and treatment-related side-effects are also briefly described. More than 18 million Americans (8.3 million males and 9.7 million females) with a history of cancer were alive on January 1, 2022. The 3 most prevalent cancers are prostate (3,523,230), melanoma of the skin (760,640), and colon and rectum (726,450) among males and breast (4,055,770), uterine corpus (891,560), and thyroid (823,800) among females. More than one-half (53%) of survivors were diagnosed within the past 10 years, and two-thirds (67%) were aged 65 years or older. One of the largest racial disparities in treatment is for rectal cancer, for which 41% of Black patients with stage I disease receive proctectomy or proctocolectomy compared to 66% of White patients. Surgical receipt is also substantially lower among Black patients with non-small cell lung cancer, 49% for stages I-II and 16% for stage III versus 55% and 22% for White patients, respectively. These treatment disparities are exacerbated by the fact that Black patients continue to be less likely to be diagnosed with stage I disease than White patients for most cancers, with some of the largest disparities for female breast (53% vs 68%) and endometrial (59% vs 73%). Although there are a growing number of tools that can assist patients, caregivers, and clinicians in navigating the various phases of cancer survivorship, further evidence-based strategies and equitable access to available resources are needed to mitigate disparities for communities of color and optimize care for people with a history of cancer. CA Cancer J Clin. 2022;72:409-436.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , American Cancer Society , Female , Humans , Male , National Cancer Institute (U.S.) , Survivorship , United States/epidemiology
10.
CA Cancer J Clin ; 72(3): 202-229, 2022 05.
Article in English | MEDLINE | ID: mdl-35143040

ABSTRACT

African American/Black individuals have a disproportionate cancer burden, including the highest mortality and the lowest survival of any racial/ethnic group for most cancers. Every 3 years, the American Cancer Society estimates the number of new cancer cases and deaths for Black people in the United States and compiles the most recent data on cancer incidence (herein through 2018), mortality (through 2019), survival, screening, and risk factors using population-based data from the National Cancer Institute and the Centers for Disease Control and Prevention. In 2022, there will be approximately 224,080 new cancer cases and 73,680 cancer deaths among Black people in the United States. During the most recent 5-year period, Black men had a 6% higher incidence rate but 19% higher mortality than White men overall, including an approximately 2-fold higher risk of death from myeloma, stomach cancer, and prostate cancer. The overall cancer mortality disparity is narrowing between Black and White men because of a steeper drop in Black men for lung and prostate cancers. However, the decline in prostate cancer mortality in Black men slowed from 5% annually during 2010 through 2014 to 1.3% during 2015 through 2019, likely reflecting the 5% annual increase in advanced-stage diagnoses since 2012. Black women have an 8% lower incidence rate than White women but a 12% higher mortality; further, mortality rates are 2-fold higher for endometrial cancer and 41% higher for breast cancer despite similar or lower incidence rates. The wide breast cancer disparity reflects both later stage diagnosis (57% localized stage vs 67% in White women) and lower 5-year survival overall (82% vs 92%, respectively) and for every stage of disease (eg, 20% vs 30%, respectively, for distant stage). Breast cancer surpassed lung cancer as the leading cause of cancer death among Black women in 2019. Targeted interventions are needed to reduce stark cancer inequalities in the Black community.


Subject(s)
Breast Neoplasms , Prostatic Neoplasms , Black or African American , American Cancer Society , Female , Humans , Male , National Cancer Institute (U.S.) , United States/epidemiology
11.
CA Cancer J Clin ; 72(6): 524-541, 2022 11.
Article in English | MEDLINE | ID: mdl-36190501

ABSTRACT

This article is the American Cancer Society's update on female breast cancer statistics in the United States, including population-based data on incidence, mortality, survival, and mammography screening. Breast cancer incidence rates have risen in most of the past four decades; during the most recent data years (2010-2019), the rate increased by 0.5% annually, largely driven by localized-stage and hormone receptor-positive disease. In contrast, breast cancer mortality rates have declined steadily since their peak in 1989, albeit at a slower pace in recent years (1.3% annually from 2011 to 2020) than in the previous decade (1.9% annually from 2002 to 2011). In total, the death rate dropped by 43% during 1989-2020, translating to 460,000 fewer breast cancer deaths during that time. The death rate declined similarly for women of all racial/ethnic groups except American Indians/Alaska Natives, among whom the rates were stable. However, despite a lower incidence rate in Black versus White women (127.8 vs. 133.7 per 100,000), the racial disparity in breast cancer mortality remained unwavering, with the death rate 40% higher in Black women overall (27.6 vs. 19.7 deaths per 100,000 in 2016-2020) and two-fold higher among adult women younger than 50 years (12.1 vs. 6.5 deaths per 100,000). Black women have the lowest 5-year relative survival of any racial/ethnic group for every molecular subtype and stage of disease (except stage I), with the largest Black-White gaps in absolute terms for hormone receptor-positive/human epidermal growth factor receptor 2-negative disease (88% vs. 96%), hormone receptor-negative/human epidermal growth factor receptor 2-positive disease (78% vs. 86%), and stage III disease (64% vs. 77%). Progress against breast cancer mortality could be accelerated by mitigating racial disparities through increased access to high-quality screening and treatment via nationwide Medicaid expansion and partnerships between community stakeholders, advocacy organizations, and health systems.


Subject(s)
Breast Neoplasms , Adult , Female , United States/epidemiology , Humans , Mammography , Early Detection of Cancer , Racial Groups , Incidence
12.
CA Cancer J Clin ; 72(6): 542-560, 2022 11.
Article in English | MEDLINE | ID: mdl-35829644

ABSTRACT

Previous studies using data from the early 2000s demonstrated that patients who were uninsured were more likely to present with late-stage disease and had worse short-term survival after cancer diagnosis in the United States. In this report, the authors provide comprehensive data on the associations of health insurance coverage type with stage at diagnosis and long-term survival in individuals aged 18-64 years who were diagnosed between 2010 and 2013 with 19 common cancers from the National Cancer Database, with survival follow-up through December 31, 2019. Compared with privately insured patients, Medicaid-insured and uninsured patients were significantly more likely to be diagnosed with late-stage (III/IV) cancer for all stageable cancers combined and separately. For all stageable cancers combined and for six cancer sites-prostate, colorectal, non-Hodgkin lymphoma, oral cavity, liver, and esophagus-uninsured patients with Stage I disease had worse survival than privately insured patients with Stage II disease. Patients without private insurance coverage had worse short-term and long-term survival at each stage for all cancers combined; patients who were uninsured had worse stage-specific survival for 12 of 17 stageable cancers and had worse survival for leukemia and brain tumors. Expanding access to comprehensive health insurance coverage is crucial for improving access to cancer care and outcomes, including stage at diagnosis and survival.


Subject(s)
Insurance, Health , Prostatic Neoplasms , Male , United States/epidemiology , Humans , Insurance Coverage , Medically Uninsured , Medicaid
13.
CA Cancer J Clin ; 72(2): 112-143, 2022 03.
Article in English | MEDLINE | ID: mdl-34878180

ABSTRACT

In this report, the authors provide comprehensive and up-to-date US data on disparities in cancer occurrence, major risk factors, and access to and utilization of preventive measures and screening by sociodemographic characteristics. They also review programs and resources that have reduced cancer disparities and provide policy recommendations to further mitigate these inequalities. The overall cancer death rate is 19% higher among Black males than among White males. Black females also have a 12% higher overall cancer death rate than their White counterparts despite having an 8% lower incidence rate. There are also substantial variations in death rates for specific cancer types and in stage at diagnosis, survival, exposure to risk factors, and receipt of preventive measures and screening by race/ethnicity, socioeconomic status, and geographic location. For example, kidney cancer death rates by sex among American Indian/Alaska Native people are ≥64% higher than the corresponding rates in each of the other racial/ethnic groups, and the 5-year relative survival for all cancers combined is 14% lower among residents of poorer counties than among residents of more affluent counties. Broad and equitable implementation of evidence-based interventions, such as increasing health insurance coverage through Medicaid expansion or other initiatives, could substantially reduce cancer disparities. However, progress will require not only equitable local, state, and federal policies but also broad interdisciplinary engagement to elevate and address fundamental social inequities and longstanding systemic racism.


Subject(s)
Ethnicity , Neoplasms , American Cancer Society , Female , Humans , Male , Medicaid , Neoplasms/epidemiology , Neoplasms/therapy , Racial Groups , United States/epidemiology
14.
CA Cancer J Clin ; 71(1): 7-33, 2021 01.
Article in English | MEDLINE | ID: mdl-33433946

ABSTRACT

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.


Subject(s)
Mortality/trends , Neoplasms/epidemiology , SEER Program/statistics & numerical data , American Cancer Society , Humans , Incidence , Neoplasms/therapy , United States/epidemiology
15.
CA Cancer J Clin ; 71(3): 209-249, 2021 05.
Article in English | MEDLINE | ID: mdl-33538338

ABSTRACT

This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.


Subject(s)
Developed Countries/statistics & numerical data , Developing Countries/statistics & numerical data , Global Health/statistics & numerical data , Neoplasms/epidemiology , Population Dynamics , Africa/epidemiology , Americas/epidemiology , Asia/epidemiology , Databases, Factual , Europe , Female , Humans , Incidence , Internationality , Male , Neoplasms/mortality , Oceania/epidemiology , Risk Factors , Sex Distribution
16.
CA Cancer J Clin ; 71(6): 466-487, 2021 11.
Article in English | MEDLINE | ID: mdl-34545941

ABSTRACT

The Hispanic/Latino population is the second largest racial/ethnic group in the continental United States and Hawaii, accounting for 18% (60.6 million) of the total population. An additional 3 million Hispanic Americans live in Puerto Rico. Every 3 years, the American Cancer Society reports on cancer occurrence, risk factors, and screening for Hispanic individuals in the United States using the most recent population-based data. An estimated 176,600 new cancer cases and 46,500 cancer deaths will occur among Hispanic individuals in the continental United States and Hawaii in 2021. Compared to non-Hispanic Whites (NHWs), Hispanic men and women had 25%-30% lower incidence (2014-2018) and mortality (2015-2019) rates for all cancers combined and lower rates for the most common cancers, although this gap is diminishing. For example, the colorectal cancer (CRC) incidence rate ratio for Hispanic compared with NHW individuals narrowed from 0.75 (95% CI, 0.73-0.78) in 1995 to 0.91 (95% CI, 0.89-0.93) in 2018, reflecting delayed declines in CRC rates among Hispanic individuals in part because of slower uptake of screening. In contrast, Hispanic individuals have higher rates of infection-related cancers, including approximately two-fold higher incidence of liver and stomach cancer. Cervical cancer incidence is 32% higher among Hispanic women in the continental US and Hawaii and 78% higher among women in Puerto Rico compared to NHW women, yet is largely preventable through screening. Less access to care may be similarly reflected in the low prevalence of localized-stage breast cancer among Hispanic women, 59% versus 67% among NHW women. Evidence-based strategies for decreasing the cancer burden among the Hispanic population include the use of culturally appropriate lay health advisors and patient navigators and targeted, community-based intervention programs to facilitate access to screening and promote healthy behaviors. In addition, the impact of the COVID-19 pandemic on cancer trends and disparities in the Hispanic population should be closely monitored.


Subject(s)
Early Detection of Cancer/statistics & numerical data , Health Services Accessibility/statistics & numerical data , Hispanic or Latino/statistics & numerical data , Neoplasms/ethnology , Adolescent , Adult , Aged , Female , Humans , Incidence , Male , Middle Aged , Neoplasms/mortality , Neoplasms/prevention & control , Puerto Rico/epidemiology , Risk Factors , Survival Rate , United States/epidemiology , White People/statistics & numerical data , Young Adult
17.
CA Cancer J Clin ; 71(5): 381-406, 2021 09.
Article in English | MEDLINE | ID: mdl-34427324

ABSTRACT

Brain and other central nervous system (CNS) tumors are among the most fatal cancers and account for substantial morbidity and mortality in the United States. Population-based data from the Central Brain Tumor Registry of the United States (a combined data set of the National Program of Cancer Registries [NPCR] and Surveillance, Epidemiology, and End Results [SEER] registries), NPCR, National Vital Statistics System and SEER program were analyzed to assess the contemporary burden of malignant and nonmalignant brain and other CNS tumors (hereafter brain) by histology, anatomic site, age, sex, and race/ethnicity. Malignant brain tumor incidence rates declined by 0.8% annually from 2008 to 2017 for all ages combined but increased 0.5% to 0.7% per year among children and adolescents. Malignant brain tumor incidence is highest in males and non-Hispanic White individuals, whereas the rates for nonmalignant tumors are highest in females and non-Hispanic Black individuals. Five-year relative survival for all malignant brain tumors combined increased between 1975 to 1977 and 2009 to 2015 from 23% to 36%, with larger gains among younger age groups. Less improvement among older age groups largely reflects a higher burden of glioblastoma, for which there have been few major advances in prevention, early detection, and treatment the past 4 decades. Specifically, 5-year glioblastoma survival only increased from 4% to 7% during the same time period. In addition, important survival disparities by race/ethnicity remain for childhood tumors, with the largest Black-White disparities for diffuse astrocytomas (75% vs 86% for patients diagnosed during 2009-2015) and embryonal tumors (59% vs 67%). Increased resources for the collection and reporting of timely consistent data are critical for advancing research to elucidate the causes of sex, age, and racial/ethnic differences in brain tumor occurrence, especially for rarer subtypes and among understudied populations.


Subject(s)
Central Nervous System Neoplasms/epidemiology , Adolescent , Adult , Aged , Brain Neoplasms/classification , Brain Neoplasms/epidemiology , Brain Neoplasms/mortality , Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/mortality , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , National Program of Cancer Registries/statistics & numerical data , Registries/statistics & numerical data , SEER Program/statistics & numerical data , United States/epidemiology , Young Adult
18.
CA Cancer J Clin ; 70(1): 7-30, 2020 01.
Article in English | MEDLINE | ID: mdl-31912902

ABSTRACT

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.


Subject(s)
American Cancer Society , Neoplasms/epidemiology , Registries , SEER Program/statistics & numerical data , Adult , Aged , Female , Humans , Incidence , Male , Middle Aged , Survival Rate/trends , United States/epidemiology , Young Adult
19.
CA Cancer J Clin ; 70(6): 443-459, 2020 11.
Article in English | MEDLINE | ID: mdl-32940362

ABSTRACT

Cancer statistics for adolescents and young adults (AYAs) (aged 15-39 years) are often presented in aggregate, masking important heterogeneity. The authors analyzed population-based cancer incidence and mortality for AYAs in the United States by age group (ages 15-19, 20-29, and 30-39 years), sex, and race/ethnicity. In 2020, there will be approximately 89,500 new cancer cases and 9270 cancer deaths in AYAs. Overall cancer incidence increased in all AYA age groups during the most recent decade (2007-2016), largely driven by thyroid cancer, which rose by approximately 3% annually among those aged 20 to 39 years and 4% among those aged 15 to 19 years. Incidence also increased in most age groups for several cancers linked to obesity, including kidney (3% annually across all age groups), uterine corpus (3% in the group aged 20-39 years), and colorectum (0.9%-1.5% in the group aged 20-39 years). Rates declined dramatically for melanoma in the group aged 15 to 29 years (4%-6% annually) but remained stable among those aged 30 to 39 years. Overall cancer mortality declined during 2008 through 2017 by 1% annually across age and sex groups, except for women aged 30 to 39 years, among whom rates were stable because of a flattening of declines in female breast cancer. Rates increased for cancers of the colorectum and uterine corpus in the group aged 30 to 39 years, mirroring incidence trends. Five-year relative survival in AYAs is similar across age groups for all cancers combined (range, 83%-86%) but varies widely for some cancers, such as acute lymphocytic leukemia (74% in the group aged 15-19 years vs 51% in the group aged 30-39 years) and brain tumors (77% vs 66%), reflecting differences in histologic subtype distribution and treatment. Progress in reducing cancer morbidity and mortality among AYAs could be addressed through more equitable access to health care, increasing clinical trial enrollment, expanding research, and greater alertness among clinicians and patients for early symptoms and signs of cancer. Further progress could be accelerated with increased disaggregation by age in research on surveillance, etiology, basic biology, and survivorship.


Subject(s)
Neoplasms/epidemiology , Adolescent , Adult , Age Distribution , Female , Humans , Incidence , Male , Neoplasms/ethnology , Neoplasms/mortality , Racial Groups/statistics & numerical data , Sex Distribution , Survival Rate , United States/epidemiology , Young Adult
20.
CA Cancer J Clin ; 70(3): 165-181, 2020 05.
Article in English | MEDLINE | ID: mdl-32202312

ABSTRACT

Lack of health insurance coverage is strongly associated with poor cancer outcomes in the United States. The uninsured are less likely to have access to timely and effective cancer prevention, screening, diagnosis, treatment, survivorship, and end-of-life care than their counterparts with health insurance coverage. On March 23, 2010, the Patient Protection and Affordable Care Act (ACA) was signed into law, representing the largest change to health care delivery in the United States since the introduction of the Medicare and Medicaid programs in 1965. The primary goals of the ACA are to improve health insurance coverage, the quality of care, and patient outcomes, and to maintain or lower costs by catalyzing changes in the health care delivery system. In this review, we describe the main components of the ACA, including health insurance expansions, coverage reforms, and delivery system reforms, provisions within these components, and their relevance to cancer screening and early detection, care, and outcomes. We then highlight selected, well-designed studies examining the effects of the ACA provisions on coverage, access to cancer care, and disparities throughout the cancer control continuum. Finally, we identify research gaps to inform evaluation of current and emerging health policies related to cancer outcomes.


Subject(s)
Early Detection of Cancer/economics , Health Services Accessibility/economics , Neoplasms/economics , Patient Protection and Affordable Care Act , Humans , Insurance, Health/economics , Medically Uninsured/statistics & numerical data , Morbidity/trends , Neoplasms/epidemiology , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL