Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Cell ; 183(2): 363-376.e13, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33007267

ABSTRACT

Although treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs) can produce remarkably durable responses, most patients develop early disease progression. Furthermore, initial response assessment by conventional imaging is often unable to identify which patients will achieve durable clinical benefit (DCB). Here, we demonstrate that pre-treatment circulating tumor DNA (ctDNA) and peripheral CD8 T cell levels are independently associated with DCB. We further show that ctDNA dynamics after a single infusion can aid in identification of patients who will achieve DCB. Integrating these determinants, we developed and validated an entirely noninvasive multiparameter assay (DIREct-On, Durable Immunotherapy Response Estimation by immune profiling and ctDNA-On-treatment) that robustly predicts which patients will achieve DCB with higher accuracy than any individual feature. Taken together, these results demonstrate that integrated ctDNA and circulating immune cell profiling can provide accurate, noninvasive, and early forecasting of ultimate outcomes for NSCLC patients receiving ICIs.


Subject(s)
Biomarkers, Pharmacological/blood , Circulating Tumor DNA/analysis , Immune Checkpoint Inhibitors/therapeutic use , Adult , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/genetics , Female , Humans , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/metabolism , Immunotherapy/methods , Lung Neoplasms/pathology , Male , Middle Aged , Programmed Cell Death 1 Receptor/metabolism
2.
Nature ; 580(7802): 245-251, 2020 04.
Article in English | MEDLINE | ID: mdl-32269342

ABSTRACT

Radiologic screening of high-risk adults reduces lung-cancer-related mortality1,2; however, a small minority of eligible individuals undergo such screening in the United States3,4. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)5, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed 'lung cancer likelihood in plasma' (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.


Subject(s)
Circulating Tumor DNA/analysis , Circulating Tumor DNA/genetics , Early Detection of Cancer/methods , Genome, Human/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Mutation , Cohort Studies , Female , Hematopoiesis/genetics , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/blood , Lung Neoplasms/pathology , Male , Middle Aged , Reproducibility of Results
3.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38058187

ABSTRACT

The worldwide appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated significant concern and posed a considerable challenge to global health. Phosphorylation is a common post-translational modification that affects many vital cellular functions and is closely associated with SARS-CoV-2 infection. Precise identification of phosphorylation sites could provide more in-depth insight into the processes underlying SARS-CoV-2 infection and help alleviate the continuing COVID-19 crisis. Currently, available computational tools for predicting these sites lack accuracy and effectiveness. In this study, we designed an innovative meta-learning model, Meta-Learning for Serine/Threonine Phosphorylation (MeL-STPhos), to precisely identify protein phosphorylation sites. We initially performed a comprehensive assessment of 29 unique sequence-derived features, establishing prediction models for each using 14 renowned machine learning methods, ranging from traditional classifiers to advanced deep learning algorithms. We then selected the most effective model for each feature by integrating the predicted values. Rigorous feature selection strategies were employed to identify the optimal base models and classifier(s) for each cell-specific dataset. To the best of our knowledge, this is the first study to report two cell-specific models and a generic model for phosphorylation site prediction by utilizing an extensive range of sequence-derived features and machine learning algorithms. Extensive cross-validation and independent testing revealed that MeL-STPhos surpasses existing state-of-the-art tools for phosphorylation site prediction. We also developed a publicly accessible platform at https://balalab-skku.org/MeL-STPhos. We believe that MeL-STPhos will serve as a valuable tool for accelerating the discovery of serine/threonine phosphorylation sites and elucidating their role in post-translational regulation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Phosphorylation , SARS-CoV-2/metabolism , Serine/metabolism , Threonine/metabolism
4.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35753698

ABSTRACT

Long noncoding RNAs (lncRNAs) are primarily regulated by their cellular localization, which is responsible for their molecular functions, including cell cycle regulation and genome rearrangements. Accurately identifying the subcellular location of lncRNAs from sequence information is crucial for a better understanding of their biological functions and mechanisms. In contrast to traditional experimental methods, bioinformatics or computational methods can be applied for the annotation of lncRNA subcellular locations in humans more effectively. In the past, several machine learning-based methods have been developed to identify lncRNA subcellular localization, but relevant work for identifying cell-specific localization of human lncRNA remains limited. In this study, we present the first application of the tree-based stacking approach, TACOS, which allows users to identify the subcellular localization of human lncRNA in 10 different cell types. Specifically, we conducted comprehensive evaluations of six tree-based classifiers with 10 different feature descriptors, using a newly constructed balanced training dataset for each cell type. Subsequently, the strengths of the AdaBoost baseline models were integrated via a stacking approach, with an appropriate tree-based classifier for the final prediction. TACOS displayed consistent performance in both the cross-validation and independent assessments compared with the other two approaches employed in this study. The user-friendly online TACOS web server can be accessed at https://balalab-skku.org/TACOS.


Subject(s)
RNA, Long Noncoding , Computational Biology/methods , Humans , Machine Learning , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
5.
BMC Vet Res ; 20(1): 233, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807154

ABSTRACT

Canine mammary gland tumors (MGT) have a poor prognosis in intact female canines, posing a clinical challenge. This study aimed to establish novel canine mammary cancer cell lines from primary tumors and characterize their cellular and molecular features to find potential therapeutic drugs. The MGT cell lines demonstrated rapid cell proliferation and colony formation in an anchorage-independent manner. Vimentin and α-SMA levels were significantly elevated in MGT cell lines compared to normal canine kidney (MDCK) cells, while CDH1 expression was either significantly lower or not detected at all, based on quantitative real-time PCR (qRT-PCR) analysis. Functional annotation and enrichment analysis revealed that epithelial-mesenchymal transition (EMT) phenotypes and tumor-associated pathways, particularly the PI3K/Akt signaling pathway, were upregulated in MGT cells. BYL719 (Alpelisib), a PI3K inhibitor, was also examined for cytotoxicity on the MGT cell lines. The results show that BYL719 can significantly inhibit the proliferation of MGT cell lines in vitro. Overall, our findings suggest that the MGT cell lines may be valuable for future studies on the development, progression, metastasis, and management of tumors.


Subject(s)
Dog Diseases , Mammary Neoplasms, Animal , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Dogs , Female , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Dog Diseases/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Signal Transduction , Phosphoinositide-3 Kinase Inhibitors/pharmacology
6.
Basic Res Cardiol ; 116(1): 19, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742276

ABSTRACT

Endogenous capability of the post-mitotic human heart holds great promise to restore the injured myocardium. Recent evidence indicates that the extracellular vesicles (EVs) regulate cardiac homeostasis and regeneration. Here, we investigated the molecular mechanism of EVs for self-repair. We isolated EVs from human iPSC-derived cardiomyocytes (iCMs), which were exposed to hypoxic (hEVs) and normoxic conditions (nEVs), and examined their roles in in vitro and in vivo models of cardiac injury. hEV treatment significantly improved the viability of hypoxic iCMs in vitro and cardiac function of severely injured murine myocardium in vivo. Microarray analysis of the EVs revealed significantly enriched expression of the miR-106a-363 cluster (miR cluster) in hEVs vs. nEVs. This miR cluster preserved survival and contractility of hypoxia-injured iCMs and maintained murine left-ventricular (LV) chamber size, improved LV ejection fraction, and reduced myocardial fibrosis of the injured myocardium. RNA-Seq analysis identified Jag1-Notch3-Hes1 as a target intracellular pathway of the miR cluster. Moreover, the study found that the cell cycle activator and cytokinesis genes were significantly up-regulated in the iCMs treated with miR cluster and Notch3 siRNA. Together, these results suggested that the miR cluster in the EVs stimulated cardiomyocyte cell cycle re-entry by repressing Notch3 to induce cell proliferation and augment myocardial self-repair. The miR cluster may represent an effective therapeutic approach for ischemic cardiomyopathy.


Subject(s)
Cell Proliferation , Extracellular Vesicles/transplantation , Induced Pluripotent Stem Cells/transplantation , MicroRNAs/metabolism , Myocardial Infarction/surgery , Myocytes, Cardiac/metabolism , Receptor, Notch3/metabolism , Regeneration , Animals , Cell Hypoxia , Cell Line , Disease Models, Animal , Extracellular Vesicles/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mice, Inbred C57BL , Mice, SCID , MicroRNAs/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/pathology , Receptor, Notch3/genetics , Recovery of Function , Signal Transduction , Ventricular Function, Left
7.
Int J Med Sci ; 18(3): 706-714, 2021.
Article in English | MEDLINE | ID: mdl-33437205

ABSTRACT

Objective: Fhit gene is known as a genome "caretaker" and frequently inactivated by deletion or hypermethylation on the promoter in several cancers. In spite of several lines of evidence, the exact mechanism underlying Fhit-induced biology is relatively less studied. This study will focus the role of Fhit in regulating Lin28 and microRNAs (miRNAs) loop. Material and Methods: To this end, we employed Fhit overexpressing isogenic cell lines to conduct miRNA nanostring array, and differentially expressed miRNAs were identified. Using real-time PCR and Western blot analysis, expression levels of Lin28b or miRNAs were investigated in response to the overexpression of Fhit gene in H1299 lung cancer cells. Results: A series of in vitro including gene nanostring analyses revealed that Lin28B protein was induced by Fhit gene overexpression, which consequently suppressed Let-7 miRNAs. Also, we found that miRNAs in miR-17/92 clusters are redundantly increased and there is an inverse correlation between Let-7 and miR-17/92 clusters in Fhit-expressing cells. Also, a series of in vitro experiments suggests that ELF-1- and/or STAT1-dependent Lin28b regulation is responsible for Let-7 induction in Fhit-expressing cancer cells. Conclusions: Based on the same experimental system proving that Fhit gene has a robust role in suppressing tumor progression and epithelial-mesenchymal transition, our data show that Fhit mediates the negative feedback between Lin28/Let-7 axis and miR-17/-92 miRNA although the physiological relevance of current interesting observation should be further investigated.


Subject(s)
Acid Anhydride Hydrolases/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Neoplasm Proteins/genetics , Neoplasms/genetics , Acid Anhydride Hydrolases/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Feedback, Physiological , Humans , Loss of Heterozygosity , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , Neoplasms/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
Int J Mol Sci ; 22(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34360546

ABSTRACT

Promyelocytic leukemia (PML) protein is the core component of subnuclear structures called PML nuclear bodies that are known to play important roles in cell survival, DNA damage responses, and DNA repair. Fanconi anemia (FA) proteins are required for repairing interstrand DNA crosslinks (ICLs). Here we report a novel role of PML proteins, regulating the ICL repair pathway. We found that depletion of the PML protein led to the significant reduction of damage-induced FANCD2 mono-ubiquitination and FANCD2 foci formation. Consistently, the cells treated with siRNA against PML showed enhanced sensitivity to a crosslinking agent, mitomycin C. Further studies showed that depletion of PML reduced the protein expression of FANCA, FANCG, and FANCD2 via reduced transcriptional activity. Interestingly, we observed that damage-induced CHK1 phosphorylation was severely impaired in cells with depleted PML, and we demonstrated that CHK1 regulates FANCA, FANCG, and FANCD2 transcription. Finally, we showed that inhibition of CHK1 phosphorylation further sensitized cancer cells to mitomycin C. Taken together, these findings suggest that the PML is critical for damage-induced CHK1 phosphorylation, which is important for FA gene expression and for repairing ICLs.


Subject(s)
Checkpoint Kinase 1/metabolism , Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group G Protein/metabolism , Fanconi Anemia/pathology , Gene Expression Regulation , Checkpoint Kinase 1/genetics , DNA Damage , DNA Repair , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , HeLa Cells , Humans , Phosphorylation , Ubiquitination
9.
Molecules ; 24(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974882

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most deadly genetic diseases, but surprisingly chemotherapeutic approaches against HCC are only limited to a few targets. In particular, considering the difficulty of a chemotherapeutic drug development in terms of cost and time enforces searching for surrogates to minimize effort and maximize efficiency in anti-cancer therapy. In spite of the report that approximately one thousand lichen-derived metabolites have been isolated, the knowledge about their functions and consequences in cancer development is relatively limited. Moreover, one of the major second metabolites from lichens, Atranorin has never been studied in HCC. Regarding this, we comprehensively analyze the effect of Atranorin by employing representative HCC cell lines and experimental approaches. Cell proliferation and cell cycle analysis using the compound consistently show the inhibitory effects of Atranorin. Moreover, cell death determination using Annexin-V and (Propidium Iodide) PI staining suggests that it induces cell death through necrosis. Lastly, the metastatic potential of HCC cell lines is significantly inhibited by the drug. Taken these together, we claim a novel functional finding that Atranorin comprehensively suppresses HCC tumorigenesis and metastatic potential, which could provide an important basis for anti-cancer therapeutics.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation/drug effects , Cell Transformation, Neoplastic , Hydroxybenzoates , Lichens/chemistry , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Humans , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology
10.
Proc Natl Acad Sci U S A ; 112(28): 8650-5, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26124099

ABSTRACT

Nonsmall cell lung cancer (NSCLC) is one of the leading causes of death worldwide. TNF-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in malignant cells without inducing significant toxicity in normal cells. However, several carcinomas, including lung cancer, remain resistant to TRAIL. MicroRNAs (miRNAs) are small noncoding RNAs of ∼ 24 nt that block mRNA translation and/or negatively regulate its stability. They are often aberrantly expressed in cancer and have been implicated in increasing susceptibility or resistance to TRAIL-induced apoptosis by inhibiting key functional proteins. Here we show that miR-148a is down-regulated in cells with acquired TRAIL-resistance compared with TRAIL-sensitive cells. Enforced expression of miR-148a sensitized cells to TRAIL and reduced lung tumorigenesis in vitro and in vivo through the down-modulation of matrix metalloproteinase 15 (MMP15) and Rho-associated kinase 1 (ROCK1). These findings suggest that miR-148a acts as a tumor suppressor and might have therapeutic application in the treatment of NSCLC.


Subject(s)
Apoptosis/physiology , Carcinogenesis , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , MicroRNAs/physiology , TNF-Related Apoptosis-Inducing Ligand/physiology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , DNA Methylation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism
11.
Proc Natl Acad Sci U S A ; 112(31): E4288-97, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26187928

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths worldwide. Despite advancements and improvements in surgical and medical treatments, the survival rate of lung cancer patients remains frustratingly poor. Local control for early-stage nonsmall cell lung cancer (NSCLC) has dramatically improved over the last decades for both operable and inoperable patients. However, the molecular mechanisms of NSCLC invasion leading to regional and distant disease spread remain poorly understood. Here, we identify microRNA-224 (miR-224) to be significantly up-regulated in NSCLC tissues, particularly in resected NSCLC metastasis. Increased miR-224 expression promotes cell migration, invasion, and proliferation by directly targeting the tumor suppressors TNFα-induced protein 1 (TNFAIP1) and SMAD4. In concordance with in vitro studies, mouse xenograft studies validated that miR-224 functions as a potent oncogenic miRNA in NSCLC in vivo. Moreover, we found promoter hypomethylation and activated ERK signaling to be involved in the regulation of miR-224 expression in NSCLC. Up-regulated miR-224, thus, facilitates tumor progression by shifting the equilibrium of the partially antagonist functions of SMAD4 and TNFAIP1 toward enhanced invasion and growth in NSCLC. Our findings indicate that targeting miR-224 could be effective in the treatment of certain lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Disease Progression , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/metabolism , 3' Untranslated Regions/genetics , Adaptor Proteins, Signal Transducing , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , CpG Islands/genetics , DNA Methylation/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , MAP Kinase Signaling System/genetics , Mice, Nude , MicroRNAs/genetics , Neoplasm Invasiveness , Phenotype , Promoter Regions, Genetic/genetics , Proteins/genetics , Smad4 Protein/genetics , Up-Regulation/genetics
12.
Proc Natl Acad Sci U S A ; 112(26): E3355-64, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26080425

ABSTRACT

TRAIL (TNF-related apoptosis-inducing ligand) is a promising anticancer agent that can be potentially used as an alternative or complementary therapy because of its specific antitumor activity. However, TRAIL can also stimulate the proliferation of cancer cells through the activation of NF-κB, but the exact mechanism is still poorly understood. In this study, we show that chronic exposure to subtoxic concentrations of TRAIL results in acquired resistance. This resistance is associated with the increase in miR-21, miR-30c, and miR-100 expression, which target tumor-suppressor genes fundamental in the response to TRAIL. Importantly, down-regulation of caspase-8 by miR-21 blocks receptor interacting protein-1 cleavage and induces the activation of NF-κB, which regulates these miRNAs. Thus, TRAIL activates a positive feedback loop that sustains the acquired resistance and causes an aggressive phenotype. Finally, we prove that combinatory treatment of NF-κB inhibitors and TRAIL is able to revert resistance and reduce tumor growth, with important consequences for the clinical practice.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Lung Neoplasms/pathology , MicroRNAs/physiology , NF-kappa B/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MicroRNAs/metabolism , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand/metabolism , Transcription, Genetic
13.
Proc Natl Acad Sci U S A ; 111(11): 4173-8, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24594601

ABSTRACT

The mechanism by which the 8q24 MYC enhancer region, including cancer-associated variant rs6983267, increases cancer risk is unknown due to the lack of protein-coding genes at 8q24.21. Here we report the identification of long noncoding RNAs named cancer-associated region long noncoding RNAs (CARLos) in the 8q24 region. The expression of one of the long noncoding RNAs, CARLo-5, is significantly correlated with the rs6983267 allele associated with increased cancer susceptibility. We also found the MYC enhancer region physically interacts with the active regulatory region of the CARLo-5 promoter, suggesting long-range interaction of MYC enhancer with the CARLo-5 promoter regulates CARLo-5 expression. Finally, we demonstrate that CARLo-5 has a function in cell-cycle regulation and tumor development. Overall, our data provide a key of the mystery of the 8q24 gene desert.


Subject(s)
Chromosomes, Human, Pair 8/genetics , Gene Expression Regulation, Neoplastic/genetics , Genetic Predisposition to Disease/genetics , Neoplasms/genetics , RNA, Long Noncoding/genetics , Base Sequence , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Flow Cytometry , Humans , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
14.
Proc Natl Acad Sci U S A ; 110(37): 15043-8, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23980150

ABSTRACT

MicroRNAs (miRNAs) are small 19- to 24-nt noncoding RNAs that have the capacity to regulate fundamental biological processes essential for cancer initiation and progression. In cancer, miRNAs may function as oncogenes or tumor suppressors. Here, we conducted global profiling for miRNAs in a cohort of stage 1 nonsmall cell lung cancers (n = 81) and determined that miR-486 was the most down-regulated miRNA in tumors compared with adjacent uninvolved lung tissues, suggesting that miR-486 loss may be important in lung cancer development. We report that miR-486 directly targets components of insulin growth factor (IGF) signaling including insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and phosphoinositide-3-kinase, regulatory subunit 1 (alpha) (PIK3R1, or p85a) and functions as a potent tumor suppressor of lung cancer both in vitro and in vivo. Our findings support the role for miR-486 loss in lung cancer and suggest a potential biological link to p53.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Insulin-Like Growth Factor I/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Receptor, IGF Type 1/metabolism , 3' Untranslated Regions , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Movement , Cell Proliferation , Class Ia Phosphatidylinositol 3-Kinase/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Genes, p53 , Humans , Insulin-Like Growth Factor I/antagonists & inhibitors , Insulin-Like Growth Factor I/genetics , Lung Neoplasms/pathology , Mice , Mice, Nude , Phosphoinositide-3 Kinase Inhibitors , RNA, Small Interfering/genetics , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/genetics , Signal Transduction
15.
Proc Natl Acad Sci U S A ; 109(14): 5316-21, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22431589

ABSTRACT

MicroRNAs (miRNAs) are increasingly implicated in regulating cancer initiation and progression. In this study, two miRNAs, miR-25 and -32, are identified as p53-repressed miRNAs by p53-dependent negative regulation of their transcriptional regulators, E2F1 and MYC. However, miR-25 and -32 result in p53 accumulation by directly targeting Mdm2 and TSC1, which are negative regulators of p53 and the mTOR (mammalian target of rapamycin) pathway, respectively, leading to inhibition of cellular proliferation through cell cycle arrest. Thus, there is a recurrent autoregulatory circuit involving expression of p53, E2F1, and MYC to regulate the expression of miR-25 and -32, which are miRNAs that, in turn, control p53 accumulation. Significantly, overexpression of transfected miR-25 and -32 in glioblastoma multiforme cells inhibited growth of the glioblastoma multiforme cells in mouse brain in vivo. The results define miR-25 and -32 as positive regulators of p53, underscoring their role in tumorigenesis in glioblastoma.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism , Brain Neoplasms/pathology , Cell Cycle , Cell Proliferation , E2F1 Transcription Factor/physiology , Glioblastoma/pathology , Humans , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-myc/physiology , Transcription, Genetic , Tuberous Sclerosis Complex 1 Protein , Tumor Suppressor Proteins/metabolism
16.
Nat Cell Biol ; 9(11): 1303-10, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17952061

ABSTRACT

Mitochondrial proteins function as essential regulators in apoptosis. Here, we show that mitochondrial adenylate kinase 2 (AK2) mediates mitochondrial apoptosis through the formation of an AK2-FADD-caspase-10 (AFAC10) complex. Downregulation of AK2 attenuates etoposide- or staurosporine-induced apoptosis in human cells, but not that induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL) or Fas ligand (FasL). During intrinsic apoptosis, AK2 translocates to the cytoplasm, whereas this event is diminished in Apaf-1 knockdown cells and prevented by Bcl-2 or Bcl-X(L). Addition of purified AK2 protein to cell extracts first induces activation of caspase-10 via FADD and subsequently caspase-3 activation, but does not affect caspase-8. AFAC10 complexes are detected in cells undergoing intrinsic cell death and AK2 promotes the association of caspase-10 with FADD. In contrast, AFAC10 complexes are not detected in several etoposide-resistant human tumour cell lines. Taken together, these results suggest that, acting in concert with FADD and caspase-10, AK2 mediates a novel intrinsic apoptotic pathway that may be involved in tumorigenesis.


Subject(s)
Adenylate Kinase/physiology , Apoptosis/physiology , Caspase 10/metabolism , Fas-Associated Death Domain Protein/metabolism , Isoenzymes/physiology , Adenylate Kinase/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cells, Cultured , HeLa Cells , Humans , Isoenzymes/pharmacology , Multienzyme Complexes/metabolism , Subcellular Fractions/metabolism
17.
Mol Ther Nucleic Acids ; 35(2): 102192, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38779332

ABSTRACT

RNA N4-acetylcytidine (ac4C) is a highly conserved RNA modification that plays a crucial role in controlling mRNA stability, processing, and translation. Consequently, accurate identification of ac4C sites across the genome is critical for understanding gene expression regulation mechanisms. In this study, we have developed ac4C-AFL, a bioinformatics tool that precisely identifies ac4C sites from primary RNA sequences. In ac4C-AFL, we identified the optimal sequence length for model building and implemented an adaptive feature representation strategy that is capable of extracting the most representative features from RNA. To identify the most relevant features, we proposed a novel ensemble feature importance scoring strategy to rank features effectively. We then used this information to conduct the sequential forward search, which individually determine the optimal feature set from the 16 sequence-derived feature descriptors. Utilizing these optimal feature descriptors, we constructed 176 baseline models using 11 popular classifiers. The most efficient baseline models were identified using the two-step feature selection approach, whose predicted scores were integrated and trained with the appropriate classifier to develop the final prediction model. Our rigorous cross-validations and independent tests demonstrate that ac4C-AFL surpasses contemporary tools in predicting ac4C sites. Moreover, we have developed a publicly accessible web server at https://balalab-skku.org/ac4C-AFL/.

18.
Anim Cells Syst (Seoul) ; 28(1): 93-109, 2024.
Article in English | MEDLINE | ID: mdl-38487309

ABSTRACT

Myeloid ecotropic virus insertion site 1 (MEIS1) is a HOX co-factor necessary for organ development and normal hematopoiesis. Recently, MEIS1 has been linked to the development and progression of various cancers. However, its role in gliomagenesis particularly on glioma stem cells (GSCs) remains unclear. Here, we demonstrate that MEIS1 is highly upregulated in GSCs compared to normal, and glioma cells and to its differentiated counterparts. Inhibition of MEIS1 expression by shRNA significantly reduced GSC growth in both in vitro and in vivo experiments. On the other hand, integrated transcriptomics analyses of glioma datasets revealed that MEIS1 expression is correlated to cell cycle-related genes. Clinical data analysis revealed that MEIS1 expression is elevated in high-grade gliomas, and patients with high MEIS1 levels have poorer overall survival outcomes. The findings suggest that MEIS1 is a prognostic biomarker for glioma patients and a possible target for developing novel therapeutic strategies against GBM.

19.
Int J Antimicrob Agents ; 64(1): 107187, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697577

ABSTRACT

Viral pathogens, particularly influenza and SARS-CoV-2, pose a significant global health challenge. Given the immunomodulatory properties of human milk oligosaccharides, in particular 2'-fucosyllactose and 3-fucosyllactose (3-FL), we investigated their dietary supplementation effects on antiviral responses in mouse models. This study revealed distinct immune modulations induced by 3-FL. RNA-sequencing data showed that 3-FL increased the expression of interferon receptors, such as Interferon Alpha and Beta Receptor (IFNAR) and Interferon Gamma Receptor (IFNGR), while simultaneously downregulating interferons and interferon-stimulated genes, an effect not observed with 2'-fucosyllactose supplementation. Such modulation enhanced antiviral responses in both cell culture and animal models while attenuating pre-emptive inflammatory responses. Nitric oxide concentrations in 3-FL-supplemented A549 cells and mouse lung tissues were elevated exclusively upon infection, reaching 5.8- and 1.9-fold increases over control groups, respectively. In addition, 3-FL promoted leukocyte infiltration into the site of infection upon viral challenge. 3-FL supplementation provided protective efficacy against lethal influenza challenge in mice. The demonstrated antiviral efficacy spanned multiple influenza strains and extended to SARS-CoV-2. In conclusion, 3-FL is a unique immunomodulator that helps protect the host from viral infection while suppressing inflammation prior to infection.


Subject(s)
Trisaccharides , Animals , Mice , Humans , Trisaccharides/pharmacology , Trisaccharides/immunology , A549 Cells , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/drug therapy , Female , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/immunology , Mice, Inbred BALB C , Disease Models, Animal , Dietary Supplements , Nitric Oxide/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Lung/immunology , Lung/virology , Oligosaccharides
20.
Anim Cells Syst (Seoul) ; 28(1): 184-197, 2024.
Article in English | MEDLINE | ID: mdl-38693921

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has chemotherapeutic potential as a regulator of an extrinsic apoptotic ligand, but its effect as a drug is limited by innate and acquired resistance. Recent findings suggest that an intermediate drug tolerance could mediate acquired resistance, which has made the main obstacle for limited utility of TRAIL as an anti-cancer therapeutics. We propose miRNA-dependent epigenetic modification drives the drug tolerant state in TRAIL-induced drug tolerant (TDT). Transcriptomic analysis revealed miR-29 target gene activation in TDT cells, showing oncogenic signature in lung cancer. Also, the restored TRAIL-sensitivity was associated with miR-29ac and 140-5p expressions, which is known as tumor suppressor by suppressing oncogenic protein RSK2 (p90 ribosomal S6 kinase), further confirmed in patient samples. Moreover, we extended this finding into 119 lung cancer cell lines from public data set, suggesting a significant correlation between TRAIL-sensitivity and RSK2 mRNA expression. Finally, we found that increased RSK2 mRNA is responsible for NF-κB activation, which we previously showed as a key determinant in both innate and acquired TRAIL-resistance. Our findings support further investigation of miR-29ac and -140-5p inhibition to maintain TRAIL-sensitivity and improve the durability of response to TRAIL in lung cancer.

SELECTION OF CITATIONS
SEARCH DETAIL